• Title/Summary/Keyword: Rise in sea surface temperature

Search Result 35, Processing Time 0.025 seconds

The Development of Ensemble Statistical Prediction Model for Changma Precipitation (장마 강수를 위한 앙상블 통계 예측 모델 개발)

  • Kim, Jin-Yong;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.533-540
    • /
    • 2014
  • Statistical forecast models for the prediction of the summertime Changma precipitation have been developed in this study. As effective predictors for the Changma precipitation, the springtime sea surface temperature (SST) anomalies over the North Atlantic (NA1), the North Pacific (NPC) and the tropical Pacific Ocean (CNINO) has been suggested in Lee and Seo (2013). To further improve the performance of the statistical prediction scheme, we select other potential predictors and construct 2 additional statistical models. The selected predictors are the Northern Indian Ocean (NIO) and the Bering Sea (BS) SST anomalies, and the spring Eurasian snow cover anomaly (EUSC). Then, using the total three statistical prediction models, a simple ensemble-mean prediction is performed. The resulting correlation skill score reaches as high as ~0.90 for the last 21 years, which is ~16% increase in the skill compared to the prediction model by Lee and Seo (2013). The EUSC and BS predictors are related to a strengthening of the Okhotsk high, leading to an enhancement of the Changma front. The NIO predictor induces the cyclonic anomalies to the southwest of the Korean peninsula and southeasterly flows toward the peninsula, giving rise to an increase in the Changma precipitation.

Development and Assessment of LSTM Model for Correcting Underestimation of Water Temperature in Korean Marine Heatwave Prediction System (한반도 고수온 예측 시스템의 수온 과소모의 보정을 위한 LSTM 모델 구축 및 예측성 평가)

  • NA KYOUNG IM;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;KYEONG OK KIM;YONGHAN CHOI;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.101-115
    • /
    • 2024
  • The ocean heatwave is emerging as a major issue due to global warming, posing a direct threat to marine ecosystems and humanity through decreased food resources and reduced carbon absorption capacity of the oceans. Consequently, the prediction of ocean heatwaves in the vicinity of the Korean Peninsula is becoming increasingly important for marine environmental monitoring and management. In this study, an LSTM model was developed to improve the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system of the Korean Peninsula Ocean Prediction System. Based on the results of ocean heatwave predictions for the Korean Peninsula conducted in 2023, as well as those generated by the LSTM model, the performance of heatwave predictions in the East Sea, Yellow Sea, and South Sea areas surrounding the Korean Peninsula was evaluated. The LSTM model developed in this study significantly improved the prediction performance of sea surface temperatures during periods of temperature increase in all three regions. However, its effectiveness in improving prediction performance during periods of temperature decrease or before temperature rise initiation was limited. This demonstrates the potential of the LSTM model to address the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system during periods of enhanced stratification. It is anticipated that the utility of data-driven artificial intelligence models will expand in the future to improve the prediction performance of dynamical models or even replace them.

A Study on Coating Performance Design for Ice Belt Zone of the Arctic Vessels (극지 운항 선박 Ice Belt Zone의 도장 사양 설계 연구)

  • Baek, Yun-Ho;Park, Chung-Seo;So, Yong-Shin
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.66-72
    • /
    • 2013
  • The demand for an ice class ship is rising expected to rise according to the increase of energy consumption and the opening of arctic sea routes. Ice class ship should be designed to cope with the severe environmental conditions of arctic sea such as a high mechanical impact and abrasion damage, caused by pack ice, ice bergs and low temperature. The ice class ship hulls are coated with an anti-abrasion and low friction coating such as a solvent free epoxy or high solid-volume epoxy. These coatings require two-component heating pump and a high grade surface preparation. In this study, the coating performances for the arctic vessels, such as puncture absorbed energy, abrasive wear loss, friction coefficients and impact absorbed energy were evaluated. Based on this study, a proper coating performance specification for the arctic vessels was proposed and coating selection guideline in terms of coating performance and workability was also established.

  • PDF

LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data (기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Kim, Young-Won;Byeon, Seong-Hyeon;Lee, Soo-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.603-614
    • /
    • 2021
  • Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.

Experimental Study on Watertightness Properties of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 사용한 콘크리트의 수밀특성에 관한 실험적 연구)

  • Joung, Won-Seoup;Park, Dong-Su;Kwon, Ki-Joo;Kim, Joung-Woo;Kim, Do-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.429-432
    • /
    • 2008
  • Large area members such as foundation concrete of underground structures in power plants have an effect on structural stability and durability of the structure due to danger of crack occurrence and shrinkage crack that occur owing to the difference of temperature by heat of hydration between inside and outside of the members at initial age. And a construction for waterproofness is performed additionally to protect marine structures from osmosis of seawater because the structures adjoin below the surface of sea. So, if a rise of the heat of hydration, crack, and corrosion of bars are controled effectively using a composite such as fluosilicate salt in concrete production process of a initial construction, expenses are cut down and construction hours are reduced by securing durability through improvement of watertightness. The property tests of adiabatic temperature by hydration are carried out at initial age about standard concrete and test concrete using a fluosilicate salt composite to evaluate an effect on improvement of watertightness for concrete structures in this study. And the experiments such as a permeability test of hardened concrete, a water absorption test, a compression strength test and a elongation test are carried out and the results from these are described.

  • PDF

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

Improving GPS Vertical Error Using Barometric Altimeter (기압 고도계를 이용한 GPS 수직오차 개선)

  • Kim, La-Woo;Choi, Kwang-Ho;Lim, Joon-Hoo;Yoo, Won-Jae;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Accuracy of GPS (global positioning system) deteriorates dramatically or positioning is impossible in urban area occasionally since high-rise buildings and elevated roads make the reception of navigation signal very difficult so that number of visible satellites decreases. In these cases, vertical error usually becomes much larger than the horizontal error due to the intrinsic geometry of GPS satellites. To obtain more accurate and reliable height information, this paper proposes a hybrid method that combines GPS and a low-cost barometric altimeter. In the proposed method, the sea-level pressure and the sea-surface temperature are applied to the output of the altimeter. Next, the difference between the ellipsoid and the geoid is compensated. Finally, a simple Kalman filter combines the compensated barometric altitude and the GPS height. By static and car experiments, performance of the proposed method is evaluated. By the experiment results, it can be seen that the proposed method improves the altitude accuracy considerably.

A Study on the Sea Water DTEC Power Generation System of the FPSO (FPSO의 온배수를 활용한 해수 DTEC 발전시스템에 대한 연구)

  • Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • The development of limited petroleum resources for use with mankind inevitably explores and seeks to develop oil fields in the deep sea area, under the rise of the oil prices market situation. The use of Oceanic Thermal Energy Conversion (OTEC) technology, which operates the power generation facility using the temperature differences between the deep water and the surface water, is progressing actively as a trend to follow. In this study, the application of the Discharged Thermal Energy Conversion (DTEC) was designed and analyzed under the condition that the supply condition of seawater used in the FPSO installed in the deep sea area is changed up to 400m depth. In this case, it was confirmed that the design of the system that can generate more electric power according to the depth of water is confirmed, by thus applying the DTEC system by taking the cooling water at a deeper water depth than the existing design water depth. The FPSO considers the similarity of the OTEC power generation facilities, and will apply the DTEC system to FPSO in the deep sea area to accumulate technology and the conversion to further utilize the OTEC power generation facilities after the end of life cycle of oil production, which could be a solution to two important issues, namely, resource development and sustainable development.

Long-Term Trend of Picophytoplankton Contribution to the Phytoplankton Community in the East Sea (동해 식물플랑크톤 군집에 대한 초미소 식물플랑크톤(< 2 ㎛) 기여도 장기 경향성 연구)

  • Hyo Keun Jang;Dabin Lee;Sang Heon Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.525-535
    • /
    • 2023
  • In thi study, we unveil the intricate interplay among picophytoplankton (0.2-2 ㎛) communities, warming surface water temperatures, and major inorganic nutrients within the southwestern East Sea from 2003-2022. The observed surface temperature rise, reflecting global climate trends, defies conventional seasonal patterns in temperate seas, with highest temperatures in summer and lowest in spring. Concurrently, concentrations of major dissolved inorganic nutrient display distinct seasonality, with peaks in winter and gradually declining thereafter during spring. The time course of chlorophyll-a concentrations, a proxy for phytoplankton biomass, reveals a typical bimodal pattern for temperate seas. Notably, contributions from picophytoplankton exhibited a steady annual increase of approximately 0.5% over the study period, although the total chlorophyll-a concentrations declined slightly. The strong correlations between picophytoplankton contributions and inorganic nutrient concentrations is noteworthy, highlighting their competitively advantageous responsiveness to the shifting nutrient regime. These findings reflect significant ecological implications for the scientific insights into the marine ecosystem responses to changing climate conditions.

A Dinamic Consideration on the Temperature Distribution in the East Coast of Korea in August (8월의 한국동안에서의 수온분포에 관한 역학적 고찰)

  • Seung, Young Ho
    • 한국해양학회지
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 1974
  • The water temperature distribution and the water movement closely related with it, in the east side of Korea, was condidered. Special emphasis was paid on the low temperature phenomenon near Ulgi. It was known from the temperature distribution in the east side of Korea that the Tsushima current continues to flow northward at the surface near Sokcho. Also the influence of the cold water extends from the North to the South with increasing depth. The formation of the cold core near Ulgi was explained as due mainly to the existence of the boundary layer near the surface, and partly to the effect of the wind. This inclination of the boundary layer has the value of about 3.0m/Km, and the lower cold current velocity computed using this value lies in the range of those observed by Nishida(1926, 1927). The upwelling velocity was computed approximately as 1.4 10$\^$-3/ cm/sec, and the maximum distance to which the boundarylayer can rise or fall from it's equilibrium position was considered as below 10m.

  • PDF