• Title/Summary/Keyword: Rise Time and Width

Search Result 44, Processing Time 0.022 seconds

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

Improvement Plan for Myodo-Strait at Yeosu Port (여수항 묘도수로 개선에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kwon, Yu-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.775-782
    • /
    • 2021
  • The Myodo-Strait at Yeosu Port is normally used as a major vessel passage for dangerous cargo carriers that carry regular products of dangerous goods. Currently, the Myodo-Strait allows only single passage, and the speed of passage is also limited to 8 knots. As a result, demurrage at the wharf of hazardous goods are also on the rise. It is expected that the development of a number of dangerous commodity wharf in the future will increase the volume of vessel traffic and increase the number of vessels used in the project area. Therefore, it is urgent to improve the waterway in order to secure the safety of ships using the waterway and improve the demurrage. This study proposed an improvement plan for the waterway through the analysis of the marine environment of the waterway and the process of collecting opinions from users in the sea area. and it was finally proposed to expend the width of the strait to 300m and secure a depth of 9.50m through Guidelines of Port and Harbor Design review and ship handling simulation evaluation. In addition it was evaluated that the vessel traffic congestions at peak-time in the situation of solo passage was greatly improved from 71.01% to 47.3% even when it was allowed to ship's crossing passage, as a result of vessel traffic congestions evaluation. According to the proposed improvement plan, the safety of ships' passage in the project area can be secured, and the issue of demurrage was also considered to be improved.

Assessment of Flood Flow Conveyance for Urban Stream Using XP-SWMM (XP-SWMM을 이용한 도시하천에서의 홍수소통능력 평가)

  • Hong, Jun-Bum;Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.139-150
    • /
    • 2006
  • In recent, increasing of the impervious area gives rise to short concentration time and high peak discharge comparing with natural watershed and it is a cause of urban flood damage. Therefore, we have performed for structural and non-structural plans to reduce the damage from inundation. The Gulpo-cheon basin had been frequently inundated and damaged due to the water level of Han river. So, the Gulpo-cheon floodway was constructed with 20 meters width for flood control in the basin but it was not enough for our expectation and now we have a plan to expand the floodway to 80 meters. We use a XP-SWMM model developed based on EPA-SWMM version for analyzing the capacity of flood conveyance by the expansion of Gulpo-cheon floodway with the same 100 years return period design storm and the same tidal conditions of the Yellow sea. The flood conveyance after the expansion of floodway becomes three times comparing it with before the expansion. Also we simulate the flood discharge at the diversion point of Gulpo-cheon for the expanded condition of floodway and know that the discharge of about 300 m3/sec is flowing backward to the expanded floodway. Therefore we may need some kinds of hydraulic structures to prevent the back water.

The Dynamics of Film Genre Box Office Success: Macro-Economic Conditions, Fashion Momentum, and Inter-Genre Competition (영화 장르 흥행의 동학: 거시경제, 유행의 동력, 장르 간 경쟁의 효과)

  • Dong-Il Jung;Yeseul Kim;Chaewon Ahn;Youngmin Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.389-397
    • /
    • 2023
  • This study examines how macro-economic conditions, fashion momentum, and inter-genre competition affect movie genre's popularity, thus shaping fashion trends in the feature film market in Korea. Using panel data analysis of genre-specific audience sizes with 6 genre cateories and 132 monthly time points, we found that favorable economic conditions generate the fashion trend in the action/crime genre, while the deterioration of the economic conditions leads to the decline of action/crime genre. The finding implies that economic situations influence cultural consumers' psychological states, which in turn shape the fashion trend in certain direction. Furthermore, we found that the action/crime genre has a greater fashion momentum and its competitive power is stronger than other genres, suggesting that this genre has longer fashion cycle even if other genres rise to the top in their popularity. We argue that such enlengthened fahion cycle and competitive stength of the action/crime genre are associated with its breadth of niche width and audience loyalty. Scholarly and practical implications are discussed.