• Title/Summary/Keyword: Ring-opening reaction

Search Result 124, Processing Time 0.023 seconds

Mild Isomerative Opening of Tetrahydrofuranyl Subunits in Steroids Using TFAT (trifluoroacetyl trifluoromethanesulfonate): Application to Synthesis of C17-OH Rockogenin Acetate

  • Lee, Jong-Seok;Kim, Byung-Sook;Shin, Jun-Ho;Lee, Yeon-Ju;Shin, Hee-Jae;Lee, Hyi-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • A novel and efficient tetrahydrofuranyl ring opening method was developed using the highly reactive TFAT reagent in the presence of an acid scavenger, 2,6-di-tert-butyl-4-methylpyridine. Various acid sensitive groups are compatible with the reaction condition, making it generally applicable to many tetrahydrofuranyl steroids. Moreover, it is a synthetic equivalent of 'Marker degradation' affording an efficient synthesis of C17-OH rockogenin acetate.

A study on the polymerization of energetic prepolymer(GDNPF) (에너지를 함유한 선 폴리머인 Prepolymer(GDNPF) 제조 공정 연구)

  • Cheun, Young-Gu;Kim, Jin-Seuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.67-76
    • /
    • 2005
  • We synthesized an energetic prepolymer(glycidyl dinitro propyl formal, GDNPF) for plastic-bonded explosive and measured its thermodynamic parameters. Glycidyl dinitro propyl formal(GDNPF) as an energetic monomer was epoxidized from allyl-2,2-dinitro propyl formal which is reacted with dinitro propyl alcohol and excess allyl alcohol, and then energetic polymer of GDNPF was polymerized by cationic ring opening polymerization. Thermodynamic parameters were obtained from the ceiling temperature($T_c$) values of 1 mole monomer at reaction temperature. We varied feed rate of monomer, concentration of initiator and monomer to control molecular weight and polydispersity of prepolymer (GDNPF). The activated monomer polymerization has been executed with precisely controlled feed of GDNPF monomer to reactor in the complex state catalyst generated by $BF_3{\cdot}(C_3H_5)_2$ and 1,4-butanediol in $C_2H_4Cl_2$. Number average molecular weight(Mn), polydispersity(Pd), hydroxy number and glass transition temperature($T_g$) of prepolymer(GDNPF) were $2,500{\sim}3,000,\;1.2{\sim}1,3,\;0.6{\sim}0.8eq/kg\;and\;-20{\sim}-25^{\circ}C$ respectively.

Amphiphilic Norbornene-Based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared by Living Ring Opening Metathesis Polymerization

  • Park, Su-Dong;Xu, Wentao;Chung, Chan-Hong;Kwon, Young-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • We report the successful synthesis of poly(NBECOOH-b-NBEPOSS) copolymers, taking advantage of the sequential, living ring opening metathesis polymerization of NBETMS and NBEPOSS using the $RuCl_2(=CHPh)(PCY_3)_2$/$CH_2Cl_2$/$20^{\circ}C$ system, followed by the hydrolysis of trimethylsilyl groups in poly(NBETMS-b-NBEPOSS) copolymers. The living behavior of ROMP of NBETMS was first investigated using two diagnostic plots, a first order kinetic plot and a $\bar{M}_n$ vs. conversion plot. The plots confirmed that no termination and chain transfer reaction had occurred during polymerization. Poly(NBECOOH-b-NBEPOSS) copolymers were prepared using the sequential monomer addition of NBEPOSS to living poly(NBETMS) chain ends, followed by the hydrolysis of trimethylsilyl groups in the poly(NBETMS-b-NBEPOSS) copolymers. The high structural integrity of poly(NBE-COOH-b-NBEPOSS) copolymers was confirmed by $^1H$-NMR, $^{13}C$-NMR spcctroscopy and GPC.

Base-Catalyzed Rearrangement of Some 1,3-Oxathiolane Sulfoxides: Mechanistic Viewpoint of the Sigmatropic and Elimination Reactions

  • Hahn, Hoh-Gyu;Nam, Kee-Dal;Cheon, Seung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1379-1384
    • /
    • 2004
  • Rearrangements of 1,3-oxathiolane sulfoxides 8 and 9 in the presence of base are described from a mechanistic viewpoint of sigmatropic and elimination reactions. In the presence of triethylamine the (Z)-sulfoxide 8 gave the corresponding thiolsulfinate 10 by way of dimerization of the sulfenic acid intermediate 2 at room temperature while the (E)-sulfoxide 9 was recovered even after refluxing in ethyl acetate by the reversal of the [2,3]-sigmatropic rearrangement of the sulfenic acid 4. Triethylamine promoted the developing charge separation in the transition state of the sigmatropic rearrangement of the (Z)-sulfoxide 8 to facilitate the ring opening to the sulfenic acid 2. The reason for more facile ring opening of the (Z)-sulfoxide 8 in comparison with the corresponding (E)-sulfoxide 9 is attributable to the differences in the reactivity of the hydrogen adjacent to the carbonyl group. Triethylamine was not strong base to deprotonate the carbonyl-activated methylene hydrogen of the (E)-sulfoxide 9 but enough to catalyze the sigmatropic process of the sulfoxides. The sulfenic acid 2 dimerized to the thiolsulfinate 10 while the sulfenic acid 4 proceeded the sigmatropic ring closure. In the presence of strong base such as potassium hydroxide, the elimination reaction was predominant over the sigmatropic rearrangement. In this reaction condition, both sulfoxides 8a and 9a gave a mixture of the disulfide 12, the isomeric disulfide 14, and the sulfinic acid 13. Under the strong alkaline condition an elimination of activated hydrogen from the carbon adjacent to the carbonyl group to furnish the sulfenic acid 2a and the isomeric sulfenic acid 18. The formation of the transient intermediate in the reaction was proven by isolation of the isomeric disulfide 14. The reactive entity was regarded as the sulfenic acid rather than sulfenate anion under these reaction conditions.

2-(Multimethoxy)phenyl-4-methylene-1,3-dioxolane: Ⅱ. Preparation and Cationic Polymerization of 2-(x,y,z- Trimethoxyphenyl)-4-methylene-1,3-dioxolane Derivatives

  • 장원철;공명선
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1195-1199
    • /
    • 1999
  • 2-(2,4,5-Trimethoxyphenyl)-4-methylene-1,3-dioxolane (1b), 2-(2,4,6-trimethoxyphenyl)-4-methylene-1,3-di-oxolane (2b), and 2-(3,4,5-trimethoxyphenyl)-4-methylene-1,3-dioxolane (3b) were prepared and polymerized with boron trifluoride. Boron trifluoride catalyzed reaction proceeded via mainly ring-opening polymerization and cyclization reaction to yield poly(keto ether) and 3(2H)-dihydrofuranone. The yields of polymer and cyclized product exhibited a dependency on the position of the methoxy substituents in the benzene ring of 2-phenyl-4-methylene-1,3-dioxolane derivatives. Electrophilic attack of methylene or oxygen atom on 4-meth-ylene-1,3-dioxolane ring were suggested for the polymerization and cyclization.

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane (술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성)

  • Lee, Yeonsong;Hwang, Ha Soo;Lee, Jiyoung;Lo, Nu Hoang Tien;Nguyen, Tien Giang;Lee, Donghyun;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.

Chiral Synthesis of Costunolide

  • Sumaila Abu;Jeong, Jin-Hyun;Shin, Dong-Hyok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.363.1-363.1
    • /
    • 2002
  • Costunolide. a sesquiterpene lactone is isolated from Magnolia Sieboldi. It is known to possess antitumour and anti-inflammatory activities. This compound is synthesized from Ihe easily available decalin dione using the ring cleavage approach to construct the ten-membered ring system. The two keys points in this work are the chiral inductionon the allyl alcohol moiety using Sharpless epoxidation reaction and opening of the eopxide with an organocuprate reagent which leads to a $\alpha$-exomethylene lactone. (omitted)

  • PDF