• Title/Summary/Keyword: Rigidity Design

Search Result 354, Processing Time 0.033 seconds

A study on designing spindle stage using optimization of flexure (유연힌지 최적화를 이용한 스핀들 스테이지 설계에 관한 연구)

  • Park, Jaehyun;Kim, Hyo-Young;Yoo, Hyeongmin
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.22-27
    • /
    • 2022
  • The demand for new processing technology that can improve productivity is increasing in industries that require large-scale and various products. In response to this demand, a robot machining system with flexibility is required. Because of the low rigidity of the robot, the robot machining system has a large error during machining and is vulnerable to vibration generated during machining. Vibration generated during machining deteriorates machining quality and reduces the durability of the machine. To solve this problem, a stage for fixing the spindle during machining is required. In order to compensate for the robot's low rigidity, a system combining a piezoelectric actuator for generating a large force and a guide mechanism to actuate with a desired direction is required. Since the rigidity of flexible hinges varies depending on the structure, it is important to optimal design the flexible hinge and high-rigidity system. The purpose of this research is to make analytic model and optimize a flexible hinge and to design a high rigidity stage. In this research, to design a flexible hinge stage, a concept design of system for high rigidity and flexure hinge modeling is carried out. Based on analytic modeling, the optimal design for the purpose of high rigidity is finished and the optimal design results is used to check the error between the modeling and actual simulation results.

Analysis on Exact Rigidity and Free Vibration of Trapezoidal Corrugated Plates (사다리꼴형 주름판의 엄밀강성 및 자유진동 해석)

  • Kim, Young-Wann;Jung, Kang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.787-794
    • /
    • 2016
  • In this study, the exact rigidity and the free vibration of trapezoidal corrugated plate are analyzed by being based on the Kirchhoff's plate theory and the Ritz method. The previous rigidity of corrugated plate analyzed by considering just a geometric characteristic, a basic assumption and an equivalent idea can cause large errors in practical behaviors. Accordingly, the exact rigidity supplemented by correction factors of the theoretical rigidity is needed. Therefore an analysis on the exact rigidity and the free vibration using the rigidity for the plate is performed in this paper.

The Characteristics of Flexure Strength and Rigidity in Light-weight CFRP Members (경량화 CFRP 부재의 휨 강도와 강성 특성)

  • Yang, In-Young;Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.95-99
    • /
    • 2008
  • Applications of composite materials in various engineering fields have been extended significantly. For being useful composite materials, we could modify the rigidity and strength characteristics of composite material according to structures and material direction. In this study, CFRP, which has been widely used in space leisure and general structural applications due to the weight, elasticity coefficient, high fatigue strength and lower thermal transformation ect, was selected. As the CFRP is an anisotropic material whose mechanical properties change with its stacking sequence or angle, special attention was given to the effects of the fiber orientation angle on the bending characteristics of CFRP fiat and CFEP square members. It's different on the each result of strength and rigidity of CFRP flat and CFRP square members.

Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm (유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계)

  • Lee, Joon-Ho;Kim, Yu-Seong;Sung, Eun-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

Design of Microstrip Antenna with Composite Laminates and its structural rigidity (복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

Analysis of Bridges behavior Considering Pile rigidity and Soil characteristics (말뚝강성과 지반특성을 고려한 교량의 거동해석)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.103-110
    • /
    • 2001
  • The objective of this study is to investigate the behavior of superstructure considering several factors such as change of pile rigidity, soil characteristics, and the constraint condition of support. The results of this study are as follows: 1. Pile-rigidity computed by the rotating deformed plane method is continuously varied up to approximately 5D(D=diameter of pile) below the ground level. This result is consistent with the previous study$^{(12)}$, in which the pile deformation occurs at approximately $3{\sim}6$ times of pile diameter from the ground level. 2. For bridge structure-pile system, analytical results of internal forces and deformations show different values for modified pile rigidity and unchanged pile rigidity. 3. Detaild analysis considering modified pile rigidity is required for the long-span bridge design with structure pile system.

  • PDF

An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections (반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.551-559
    • /
    • 2003
  • In steel frames, the analysis and design techniques are based on either idealized fixed or pinned connections. In this case, it has the advantage that the structural analysis and the design procedure were simplified, but there could be given different results of analysis between the real steel frame connections and the idealized fixed and pinned connection. This is because the real connections would be analyzed by semi-rigid, and have some transfer of moment and rotational constraint about the loads. In this study, structural analysis program with considered connections that have joint rigidity of fixed, pinned and semi-rigid, was developed. Then, the effects of joint rigidity on strength and displacement. in steel frames subjected to lateral forces and axial forces, were investigate, and the results were compared with those of the Midas Gen. w program.

Simplified dynamic analysis of slender tapered thin-walled towers with additional mass and rigidity

  • Takabatake, Hideo;Mizuki, Akira
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.61-74
    • /
    • 1995
  • A linearly tapered, doubly symmetric thin-walled closed member, such as power-transmission towers and tourist towers, are often characterized by local variation in mass and/or rigidity, due to additional mass and rigidity. On the preliminary stage of design the closed-form solution is more effective than the finite element method. In order to propose approximate solutions, the discontinuous and local variation in mass and/or rigidity is treated continuously by means of a usable function proposed by Takabatake(1988, 1991, 1993). Thus, a simplified analytical method and approximate solutions for the free and forced transverse vibrations in linear elasticity are demonstrated in general by means of the Galerkin method. The solutions proposed here are examined from the results obtained using the Galerkin method and Wilson-${\theta}$ method and from the results obtained using NASTRAN.

A Study on Design Methods and the Composition Elements in Flexure Structure Systems (휨 구조시스템의 구조디자인적 구성요소와 디자인 조합 수법 분석)

  • Lee, Juna
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.73-84
    • /
    • 2016
  • This study analyzes the four composition elements : profile, anchorage and connection, material and member rigidity, stability, as the main composition design elements of flexure structure systems, in order to explore possibilities for more various structure designs in architectures with flexure structure system. It also examines typical design methods that use the mentioned four composition elements. At the results, this research presents an understanding of the differences between funicular shape and non-funicular shape and mechanical features of the shapes in the profile element, regarding to the ratio of rise height to span length(f/l). Also, the typical design methods are presented for the designable usages of the hinge joints and the fix joints, and for the applications of member rigidity expressed by the index of the ratio of member depth to span length(d/l). And it was presented that connection styles, addition of brace members, placement of shear walls are the main design methods in the stability element. This data would be useful to architectural designs concerning integrated design with structures.

Field Test on Rigidities of Piers in High-speed Railway (고속전철 교각의 강성도 산정을 위한 현장실험)

  • 진원종;곽종원;김병석;박성용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.745-750
    • /
    • 2000
  • The rigidity of pier is important in the analysis of rail on high speed railway bridges. This study is being performed because of followings. 1) Actual longitudinal stiffness of the structure including substructure should be considered in the calculation of longitudinal stresses in rails. 2) There are many uncertainties in piers and foundations for design. 3) Actual guideline for the design of piers is necessary. 4) Measurement on the rigidity of pier according to the types of pier, foundation and soil-condition is needed. Curve for rigidity will be obtained through this study and applied for actual design as the guideline. Stresses in rails can be estimates accurately. A pair of piers, which consists of pot-bearing for fixed support and pad-bearing for movable support, is loaded by steel frame through steel wire ropes. The responses which are intended to measure in the field test are displacements, forces and tilts on the top of piers.

  • PDF