• 제목/요약/키워드: Rigid plastic Finite Element Method

검색결과 250건 처리시간 0.022초

평금형 압출공정 설계 인자에 대한 해석적 고찰 (Analytical Considerations on Some Design Parameters of Flat-Die Extrusion Processes)

  • 이창희;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.98-101
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the rigid-plastic finite element method. The effect of loaction of extrusion profile, arrangement of multiple extrusion profiles, and design of various die land has been investigated through the analysis. Several numerical examples of flat-die extrusion, such as C-section, multiple U- shape, and window guide extrusion, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords much more uniform distribution of axial velocity

  • PDF

강철재 약협의 공정해석 및 성형공정 개선에 관한 연구 (A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body)

  • 장동환;유태곤;황병복
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.246-246
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

강철재 약협의 공정해석 및 성형공정 개선에 관한 연구 (A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body)

  • 장동환;유태곤;황병복
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.245-252
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

  • PDF

Simulation of square-to-oval single pass rolling using a computationally effective finite and slab element method

  • 이상매;김낙수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 춘계학술대회 논문집
    • /
    • pp.237-242
    • /
    • 1991
  • Shape rolling has been studied experimentally by many researchers. As large numbers of process variables are involved and the material flow is difficult to analyze in shape rolling, the use of numerical techniques as an engineering tool becomes extremely attractive. The first numerical approach to the three-dimensional plastic deformation of rolling was to investigate side spread in flat rolling. Oh and Kobayashi conducted a pioneering study in this field by applying an extremum principle for rigid, perfectlyplastic materials combined with the numerical computation. Since then, several other researchers have used three-dimensional finite element method for analysing spread in rolling . In this investigation of shaperolling al the computer simulations of shape rolling were conducted using TASKS. To verify the predictive capabilities of TASKS the first example chosen was square-to-round shape rolling

온도상승을 고려한 인발금형의 마모해석 (Analysis of die wear in wire drawing with temperature effect)

  • 김병민;조해용;김태형
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.116-122
    • /
    • 1996
  • In forming processes, die failure must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The die wear affects the tolerances of formed parts, metal flow and costs of processes etc. The only way to control these failures is to develop methods which allow prediction of the die wear and which are suited to be used in the design state in order to optimize the process. In this paper, wire drawing processes were simulated using the rigid-plastic finite element method and its results were used for predicting the die wear by Archard's wear model. The effects of the temperature rising on the wear profiles of die were also investigated. The simulation results were compared with the measured die profiles.

  • PDF

인발공정의 내부결함 방지에 관한 연구 (A Study on Prevention of Central Burst Defects in Wire Drawing)

  • 고대철;김병민;강범수
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3098-3107
    • /
    • 1994
  • The central burst defects, so-called chevroning, in wire drawing are analyzed by the rigid-plastic finite element method. The occurrence of central burst defects in wire drawing is estimated by the distribution of the hydrostatic pressure around the central part of the workpiece. It has been possible to obtain numerical boundaries which, in reduction in area vs. semicone angle plane, divide the safe and the danger zones, depending on friction factors and material properties. Based on the results of the analysis, it is suggested that the previous criterion derived from the upper bound analysis should be modified for better prediction of the defects. The back tension and the billet with a spherical hole on the central axis are also included in the analysis of the defects.

스퍼어기어의 열간단조와 냉간사이징의 유한요소해석 (FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear)

  • 박종진;이정환
    • 소성∙가공
    • /
    • 제5권2호
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF

소방용 스프링클러 분기관의 설계 개선 및 제조공정 (A New Design of Sprinkler Branch Outlet for Fire-Extinguishing Purposes and Its Manufacturing Process)

  • 전병윤;신상현;이민철;서관수;전만수
    • 한국화재소방학회논문지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2006
  • 본 논문에서는 소방용 스프링쿨러 분기관의 새로운 설계와 이의 제조 공정 기술을 제시한다. 기존의 세조각 분기관이 냉간단조 기술의 적용으로 한 조각의 분기관으로 개선되었다. 새로운 분기관의 냉간단조 공정은 강소성 유한요소법에 바탕을 둔 단조시뮬레이션 기술을 이용하여 최적화되었다. 적용연구를 통하여 제안된 시스템이 훨씬 경제적이고 구조적으로 안전함이 입증되었다.

영역분할에 의한 격자세분화기법을 사용한 철도차량 마루부재 압출공정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis for Hollow Section Extrusion of the Underframe of a Railroad Vehicle Using Mismatching Refinement with Domain Decomposition)

  • 박근;이영규;양동열;이동헌
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.362-371
    • /
    • 2000
  • In order to reduce weight of a high-speed railroad vehicle, the main body has been manufactured by hollow section extrusion using aluminum alloys. A porthole die has utilized for the hollow section extrusion process, which causes complicated die geometry and flow characteristics. Design of porthole die is very difficult due to such a complexity. The three-dimensional finite element analysis for hollow section is also an arduous job from the viewpoint of appropriate mesh construction and tremendous computation time. In the present work, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented for the analysis of the hollow section extrusion process. In addition, a modified grid-based approach with the surface element layer is utilized lot three-dimensional mesh generation of a complicated shape with hexahedral elements. The effects of porthole design are discussed through the simulation for extrusion of an underframe part of a railroad vehicle. An experiment has also been carried out for the comparison. Comparing the velocity distribution at the outlet with the thickness variation of the extruded part, it is concluded that the analysis results can provide reliable measures whether the die design is acceptable to obtain uniform part thickness. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF

엑스플리시트 시간 적분 유한 요소법을 이용한 고속 성형 해석(II) - 고속 압연 해석 (An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method(II) - Application to High Speed Rolling -)

  • 유요한;정동택
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1551-1562
    • /
    • 1991
  • 최근까지 발표된 유한 요소법을 이용한 압연 해석 관련 주요 논문들을 정리해 보면 다음과 같다. Li와 Kobayashil는 강소성 유한 요소법(rigidplastic finite element method)을 여러가지 마찰조건에 대하여 해석하였다. 이때 압연롤은 강체 (rigid body)로 시편은 가공경화(workhardening)를 동반한 강소성체로 모델링하였다. Hwang과 Kobayashi는 강소성 유한 요소법을 이용한 평면 변형 압연에서 재료 손실을 최소화하는 예비 성형체(preform)의 설계에 대한 연구를 수행하였다. 이 경우에도 역시 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체와 완전 소성체로 모델링 되었으나, 고착(sticking) 마찰 조건에 대해서만 해석을 수행하였다. Mori와 Osak- ada 그리고 Oda는 약간 압축성이 있는 재료의 평면 변형 압연에 대하여 연구하였다. 이때 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체로 모델링 되었으며 경계 면에서는 Coulomb 마찰을 고려하였다. 이밖에도 오일러(Eulerian) 수식화를 이용한 Dawson과 Thompson, Berman의 해석 결과가 있으며, 또 폭 방향의 변형까지를 고려한 Li와 Kobayashi, Mori와 Osakada의 3차원 해석 결과가 있다.