• 제목/요약/키워드: Rigid Foundation

검색결과 159건 처리시간 0.03초

강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구 (Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load)

  • 신정훈;정동수;김경웅
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

전달영향계수법에 의한 원통형 셀 구조물의 자유진동해석 (Free Vibration Analysis of Cylindrical Shell Structures with Stiffeners by Transfer Influence Coefficient Method)

  • 문덕홍;여동준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.342-348
    • /
    • 1996
  • This paper describes the formulation for the vibration analysis of cylindrical shells with stiffeners by the transfer influence coefficient method. This method was developed on the base of the concept of the successive transmission of dynamic influence coefficients. The simple computational results from a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy and the flexibility of programming, are compared with results of the transfer matrix method. It is also confirmed that the present algorithm could provide the solutions of high accuracy for system with a number of intermediate rigid supports. And all boundary conditions and the intermediate stiff supports such as intermediate rigid supports between shell and foundation can be treated only by adequately controlling the values of the spring constants.

  • PDF

탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구 (Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage)

  • 이군희;배종국;이수목
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

강성기초의 3차원 동적 경계요소해석 (Dynamic Analysis of 3-D Rigid Foundations by Boundary Elements)

  • 이찬우;김문겸;황학주
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.53-65
    • /
    • 1993
  • 본 연구에서는 강성기초의 동적응답을 얻기 위해서 비완화 경계조건(non-relaxed boundary condition)을 적용한 3차원 경계요소를 사용하였다. 경계요소는 장래의 비선형문제의 확장을 위해서 시간영역에서 형식화되었으며 기본해는 무한영역의 Stokes 해를 사용하였다. 본 연구는 검증되었으며 지반기초 및 임의 형상의 지하구조물외 동적응답을 얻는데 이용할 수 있다.

  • PDF

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • 제4권3호
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

강성(剛性)이 다른 다층토(多層土) 지반(地盤)의 변형(變形) 및 응력전달(應力傳達) (Deformation and Stress Distribution on Multi-Layered Foundation with Different Rigidity)

  • 박병기;장용채;박종천;박선배
    • 대한토목학회논문집
    • /
    • 제12권2호
    • /
    • pp.205-215
    • /
    • 1992
  • 본문은 점토지반에 기초를 통해 하중이 전달 될 경우 기초의구조(강성기초 및 요성기초), Geotextile, Sand Mat, 다층구조의 지반 등이 점토 기초지반에 어떤 거동을 일으키는가를 모형재하시험을 통해 관찰하고 수치계산을 시도한 것이다. 총 14개의 시험을 통해 수직, 수평변위를 기초형태별, 기초처리별, 강성차이별로 고찰하고 이들 변형을 예측하는 프로그램을 통해 변형과 응력을 예측하였다. 그 결과는 지반지지력은 강성기초가 유리하지만 이보다는 지반 강성이 큰 다층 구조지반이 가장 유리하며 수평, 수직, 변위에 대해서는 G/T, S/M의 병용공법이 가장 유리하고 S/M 공법만 단독으로 이용할 경우는 연직변위 억제 효과가 탁월하다. 그리고 강성이 큰 다층구조 지반은 이를 G/T와 S/M의 병용공법과 같은 효과가 있다. 본 연구결과는 강성이 큰 지반(여기서는 Rubber층)이 상층에 있고, 두께 또한 두꺼울수록 지반의 침하가 크게 억제되는 것을 확인하였다. 측방변위에서도 강성차이도 중요하지만, 이보다는 강성지반의 두께에 더 깊은 관계가 있다. 모형 토조실험을 통한 실측치와 수치해석 결과가 연직변위에 대해서는 서로 좋은 결과를 나타내 다층토 지반의 침하예측이 가능하다.

  • PDF

사각 피라미드 기초의 침하 안정성에 관한 연구 (A Study on the Stability of Subsidence for the Foundation of Rectangular Pyramid)

  • 김성필;김두환;송관권;이기선;김정훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.83-89
    • /
    • 2018
  • 본 연구에서는 유한 요소 해석을 바탕으로 연약 지반의 콘크리트 직사각형 피라미드 기초의 접지 하중과 접지 면적을 고려하여 불충분 한 설계 능력을 보완하고 하중에 의한 침하의 영향을 연구하였다. 이 연구의 결과로, 사각 피라미드 기초가 일반 기초보다 18% 더 효과적이라는 결과가 나왔는데, 이는 압밀침하에 체적의 변화에 따라 밀접한 관계를 가지고 있으며 과잉간극수압이 소산 하는 시간에 비해 비교적 짧은 시간에 일어나는 하중의 변화로 발생한 것으로 해석되었다. 해석 시 지층의 경계조건에 따라 압밀층은 상단과 하단 중간에 이루어져 있고, 압밀이 진행 되는 시간에 비해 짧은 시간에 하중이 가해져 하중이 완전히 작용하기 전에는 압밀이 전혀 발생하지 않는 것으로 해석되었다.

건식방수공법의 현장적용 사례 연구 (A Study of the field application on fully Dry-process Waterproofing system)

  • 윤광필;문소현;장진호;장성주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.197-202
    • /
    • 2005
  • This study started to confirm and prove for the applicability of the dry-process waterproofing system to cover the defects of the wet-process waterproofing system according to weather circumstance, foundation condition and maintenance, etc. This process has triple combined waterproofing system using asphalt sheet, metal sheet, engineering plastic film. It is not influenced by the concrete's crack as the foundation of the roof according to the movement of the building because the waterproofing system is designed for maintaining good quality by absorbing the stress of contraction and expansion that is occurred by the variation of temperature. Ali components used in this process can be recycled environmentally. The superiority of this process proved and reconfirmed through with the investigation of about 130 fields, around 30,000nf for two years.

  • PDF