• 제목/요약/키워드: Rigid Body Dynamic Model

검색결과 144건 처리시간 0.027초

회전축계의 진동해석을 위한 지지구조물의 등가모델에 관한 연구 (A Study on the Equivalent Model of the Support Structure for Rotordynamic Analysis)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.153-159
    • /
    • 2000
  • This paper presents a new method for including the dynamic stiffness of the stationary parts in rotordynamic analysis. As a consequence of the support dynamics, critical speeds are varied and/or additional critical speeds are introduced. Therefore, dynamic effects of the support are often significant in high speed turbomachinery, but most of analysis has considered the support as a rigid body or a simple structure. The proposed method is based on the coupled characteristics of the driving point and transfer frequency response functions of the support system to model the equivalent spring-mass series in finite element analysis. To demonstrate the applicability of the simulation procedures provided, it is applied to the rotor model of the double suction centrifugal pump. Results of the suggested equivalent-support rotor model including coupled effects agree well with the entire pump model.

  • PDF

Model Identification and Attitude Control Methodology for the Flexible Body of a Satellite

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.240-245
    • /
    • 2010
  • The controller of a model reference adaptive control monitors the plant's inputs and outputs to acknowledge its characteristics. It then adapts itself to the characteristics it encounters instead of behaving in a fixed manner. An important part of every adaptive scheme is the adaptive law for estimating the unknown parameters on line. A more precise model is required to improve performance and to stabilize a given dynamic system, such as a satellite in which performance varies over time and the coefficients change due to disturbances, etc. After model identification, the robust controller ($H{\infty}$) is designed to stabilize the rigid body and flexible body of a satellite, which can be perturbed due to disturbance. The result obtained by the $H{\infty}$ controller is compared with that of the proportional and integration controller which is commonly used for stabilizing a satellite.

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • 제5권3호
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

햅틱 인터페이스를 위한 물리기반 변형체 실시간 시뮬레이션 (Physics-based Real-time Simulation of Deformable Body for Haptic Interface)

  • 전성기;최진복;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.557-562
    • /
    • 2004
  • For constructing virtual environment it is more natural to model object as deformable body than as rigid body. High accuracy of simulation of model and low-latency computational cost for real-time simulation should be guaranteed. We pre-compute Green function through finite element analysis of deformable body and it is possible to simulate deformation of body in real-time environment using Capacitance Matrix Algorithm. Also, the capacitance matrix algorithm enables to construct the haptic rendering which serves the reaction force through a haptic device. The Newmark scheme is used for the more realistic haptic rendering and dynamic simulation in real-time.

  • PDF

크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션 (Dynamic Model Development and Simulation of Crawler Type Excavator)

  • 권순기
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF

와전류 제동장치 설계검증을 위한 동역학적 해석 (Dynamic analysis of eddy current brake system for design evaluation)

  • 정경렬;김경택;백진성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

유정압안내면의 동적 Modeling에 관한 연구 (A Study on the Dynamics Modeling of Hydrostatic tables)

  • 노승국;이찬흥;박천홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.643-647
    • /
    • 1996
  • The dynamic behavior of hydrostatic table is represented as the theoretical model, 1-dof, 2-dof rigid body spring-damper system, and finite element model. By the experimental and theoretical methods, the validity of these models and some other dynamic behaviors, such as the effects of unbalanced load and three dimensional motion, are investigated. To make easier to consider the dynamic behavior of hydrostatic table in design process, the stiffness and damping coefficients are calculated using the simple approximation method delived from the mass flow continuity condition, and compared with experimental results.

  • PDF

인류 보행의 진화: 컴퓨터 시뮬레이션 연구 (Evolution of Human Locomotion: A Computer Simulation Study)

  • 엄광문;하세카즈노리
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

글리콜 몰비가 다른 불포화 폴리에스테르 수지의 경화거동 및 점탄성 (Curing Behaviors and Viscoelastic of UPE Resins with Different Glycol Molar Ratios)

  • 이상효;박영훈;안승국;이장우
    • 폴리머
    • /
    • 제25권1호
    • /
    • pp.15-24
    • /
    • 2001
  • 본 연구에서는 불포화 폴리에스테르 수지의 글리콜 몰비에 따른 경화거동을 실험하였다. 경화과정은 Tanaka 강체진자(rigid-body pendulum)형 점탄성 모델과 differential scanning calorimetry(DSC)법을 이용하였다. 강체진자의 회전축부에 수지막을 형성하여 자유진동을 시키면 수지막의 점탄성 변화에 응답하여 pendulum의 진동주기 T 및 대수 감쇄율 ${\Delta}$가 변화한다. Pendulum의 회전축부에 있어서의 수지막의 역학적인 응답을 pendulum의 진동 운동으로 취급하고 T 및 ${\Delta}$를 이용, 수지막의 dynamic modulus(E') 및 modulus loss(E')을 구하는 계산식을 만들었다. 이 측정법과 계산식을 이용하여 불포화 폴리에스테르 수지의 경화과정에 있어서의 점탄성 변화를 추적하여 수지막의 경화성의 차이를 알 수 있었다. Neopentyl glycol(NPG)의 몰비가 증가할수록 진동주기의 감소폭 기울기에 의한 경화반응속도가 느리고, damping 값에 의한 점도값의 상승속도가 감소하는 경화거동을 고찰하였다.

  • PDF

오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석 (Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter)

  • 김진광;김복덕;이계승
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.