• 제목/요약/키워드: Riemannian metric

검색결과 153건 처리시간 0.022초

ON GENERIC SUBMANIFOLDS OF MANIFOLDS EQUIPPED WITH A HYPERCOSYMPLECTIC 3-STRUCTURE

  • Kim Jeong-Sik;Choi Jae-Dong;Tripathi Mukut Mani
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.321-335
    • /
    • 2006
  • Generic submanifolds of a Riemannian manifold endowed with a hypercosymplectic 3-structure are studied. Integrability conditions for certain distributions on the generic submanifold are discussed. Geometry of leaves of certain distributions are also studied.

SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS AS CRITICAL POINTS FOR QUADRATIC CURVATURE FUNCTIONALS

  • Huang, Guangyue;Ma, Bingqing;Yang, Jie
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1367-1382
    • /
    • 2020
  • We study rigidity results for the Einstein metrics as the critical points of a family of known quadratic curvature functionals involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor, characterized by some pointwise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moreover, we also provide a few rigidity results for locally conformally flat critical metrics.

On the Paneitz-Branson Operator in Manifolds with Negative Yamabe Constant

  • Ali, Zouaoui
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.751-767
    • /
    • 2022
  • This paper deals with the Paneitz-Branson operator in compact Riemannian manifolds with negative Yamabe invariant. We start off by providing a new criterion for the positivity of the Paneitz-Branson operator when the Yamabe invariant of the manifold is negative. Another result stated in this paper is about the existence of a metric on a manifold of dimension 5 such that the Paneitz-Branson operator has multiple negative eigenvalues. Finally, we provide new inequalities related to the upper bound of the mean value of the Q-curvature.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

SOLITON FUNCTIONS AND RICCI CURVATURES OF D-HOMOTHETICALLY DEFORMED f-KENMOTSU ALMOST RIEMANN SOLITONS

  • Urmila Biswas;Avijit Sarkar
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1215-1231
    • /
    • 2023
  • The present article contains the study of D-homothetically deformed f-Kenmotsu manifolds. Some fundamental results on the deformed spaces have been deduced. Some basic properties of the Riemannian metric as an inner product on both the original and deformed spaces have been established. Finally, applying the obtained results, soliton functions, Ricci curvatures and scalar curvatures of almost Riemann solitons with several kinds of potential vector fields on the deformed spaces have been characterized.

A REMARK ON GEL'FAND DUALITY FOR SPECTRAL TRIPLES

  • Bertozzini, Paolo;Conti, Roberto;Lewkeeratiyutkul, Wicharn
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.505-521
    • /
    • 2011
  • We present a duality between the category of compact Riemannian spin manifolds (equipped with a given spin bundle and charge conjugation) with isometries as morphisms and a suitable "metric" category of spectral triples over commutative pre-$C^*$-algebras. We also construct an embedding of a "quotient" of the category of spectral triples introduced in [5] into the latter metric category. Finally we discuss a further related duality in the case of orientation and spin-preserving maps between manifolds of fixed dimension.

ON RICCI CURVATURES OF LEFT INVARIANT METRICS ON SU(2)

  • Pyo, Yong-Soo;Kim, Hyun-Woong;Park, Joon-Sik
    • 대한수학회보
    • /
    • 제46권2호
    • /
    • pp.255-261
    • /
    • 2009
  • In this paper, we shall prove several results concerning Ricci curvature of a Riemannian manifold (M, g) := (SU(2), g) with an arbitrary given left invariant metric g. First of all, we obtain the maximum (resp. minimum) of {r(X) := Ric(X,X) | ${||X||}_g$ = 1,X ${\in}$ X(M)}, where Ric is the Ricci tensor field on (M, g), and then get a necessary and sufficient condition for the Levi-Civita connection ${\nabla}$ on the manifold (M, g) to be projectively flat. Furthermore, we obtain a necessary and sufficient condition for the Ricci curvature r(X) to be always positive (resp. negative), independently of the choice of unit vector field X.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A NON-SYMMETRIC NON-METRIC CONNECTION OF TYPE (ℓ, m)

  • Lee, Chul Woo;Lee, Jae Won
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1203-1219
    • /
    • 2020
  • Jin [7] defined a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. He said that this connection is an (ℓ, m)-type connection. Jin also studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (ℓ, m)-type connection in [7]. We study further the geometry of this subject. In this paper, we study generic lightlike submanifolds of an indefinite trans-Sasakian manifold endowed with an (ℓ, m)-type connection.