• 제목/요약/키워드: Riemannian Geometry

검색결과 88건 처리시간 0.028초

SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.371-383
    • /
    • 2014
  • We study the geometry of lightlike submanifolds of a semi-Riemannian manifold. The purpose of this paper is to prove two singular theorems for irrotational lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field of $\bar{M}(c)$ is tangent to M.

SOME RESULTS ON THE GEOMETRY OF A NON-CONFORMAL DEFORMATION OF A METRIC

  • Djaa, Nour Elhouda;Zagane, Abderrahim
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.865-879
    • /
    • 2022
  • Let (Mm, g) be an m-dimensional Riemannian manifold. In this paper, we introduce a new class of metric on (Mm, g), obtained by a non-conformal deformation of the metric g. First we investigate the Levi-Civita connection of this metric. Secondly we characterize the Riemannian curvature, the sectional curvature and the scalar curvature. In the last section we characterizes some class of proper biharmonic maps. Examples of proper biharmonic maps are constructed when (Mm, g) is an Euclidean space.

EEG 기반 SPD-Net에서 리만 프로크루스테스 분석에 대한 연구 (Research of Riemannian Procrustes Analysis on EEG Based SPD-Net)

  • 방윤석;김병형
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권4호
    • /
    • pp.179-186
    • /
    • 2024
  • This paper investigates the impact of Riemannian Procrustes Analysis (RPA) on enhancing the classification performance of SPD-Net when applied to EEG signals across different sessions and subjects. EEG signals, known for their inherent individual variability, are initially transformed into Symmetric Positive Definite (SPD) matrices, which are naturally represented on a Riemannian manifold. To mitigate the variability between sessions and subjects, we employ RPA, a method that geometrically aligns the statistical distributions of these matrices on the manifold. This alignment is designed to reduce individual differences and improve the accuracy of EEG signal classification. SPD-Net, a deep learning architecture that maintains the Riemannian structure of the data, is then used for classification. We compare its performance with the Minimum Distance to Mean (MDM) classifier, a conventional method rooted in Riemannian geometry. The experimental results demonstrate that incorporating RPA as a preprocessing step enhances the classification accuracy of SPD-Net, validating that the alignment of statistical distributions on the Riemannian manifold is an effective strategy for improving EEG-based BCI systems. These findings suggest that RPA can play a role in addressing individual variability, thereby increasing the robustness and generalization capability of EEG signal classification in practical BCI applications.

ON THE SYNGE'S THEOREM FOR COMPLEX FINSLER MANIFOLDS

  • Won, Dae-Yeon
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.137-145
    • /
    • 2004
  • In [13], we developed a theory of complex Finsler manifolds to investigate the global geometry of complex Finsler manifolds. There we proved a version of Bonnet-Myers' theorem for complex Finsler manifolds with a certain condition on the Finsler metric which is a generalization of the Kahler condition for the Hermitian metric. In this paper, we show that if the holomorphic sectional curvature of M is ${\geq}\;c^2\;>\;0$, then M is simply connected. This is a generalization of the Synge's theorem in the Riemannian geometry and the Tsukamoto's theorem for Kahler manifolds. The main point of the proof lies in how we can circumvent the convex neighborhood theorem in the Riemannian geometry. A second variation formula of arc length for complex Finsler manifolds is also derived.

Geodesic Clustering for Covariance Matrices

  • Lee, Haesung;Ahn, Hyun-Jung;Kim, Kwang-Rae;Kim, Peter T.;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제22권4호
    • /
    • pp.321-331
    • /
    • 2015
  • The K-means clustering algorithm is a popular and widely used method for clustering. For covariance matrices, we consider a geodesic clustering algorithm based on the K-means clustering framework in consideration of symmetric positive definite matrices as a Riemannian (non-Euclidean) manifold. This paper considers a geodesic clustering algorithm for data consisting of symmetric positive definite (SPD) matrices, utilizing the Riemannian geometric structure for SPD matrices and the idea of a K-means clustering algorithm. A K-means clustering algorithm is divided into two main steps for which we need a dissimilarity measure between two matrix data points and a way of computing centroids for observations in clusters. In order to use the Riemannian structure, we adopt the geodesic distance and the intrinsic mean for symmetric positive definite matrices. We demonstrate our proposed method through simulations as well as application to real financial data.

GENERIC LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN PRODUCT MANIFOLDS

  • Nand Kishor Jha;Jatinder Kaur;Sangeet Kumar;Megha Pruthi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.847-863
    • /
    • 2023
  • We introduce the study of generic lightlike submanifolds of a semi-Riemannian product manifold. We establish a characterization theorem for the induced connection on a generic lightlike submanifold to be a metric connection. We also find some conditions for the integrability of the distributions associated with generic lightlike submanifolds and discuss the geometry of foliations. Then we search for some results enabling a generic lightlike submanifold of a semi-Riemannian product manifold to be a generic lightlike product manifold. Finally, we examine minimal generic lightlike submanifolds of a semi-Riemannian product manifold.

ON STABLE MINIMAL SURFACES IN THREE DIMENSIONAL MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE

  • Lee, Chong-Hee
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.175-177
    • /
    • 1989
  • The following is the basic problem about the stability in Riemannian Geometry; given a Riemannian manifold N, find all stable complete minimal submanifolds of N. As answers of this problem, do Carmo-Peng [1] and Fischer-Colbrie and Schoen [3] showed that the stable minimal surfaces in R$^{3}$ are planes and Schoen-Yau [5] and Fischer-Colbrie and Schoen [3] gave a solution for the case where the ambient space is a three dimensional manifold with nonnegative scalar curvature. In this paper we will remove the assumption of finite absolute total curvature in [3, Theorem 3].

  • PDF

SEMI-SLANT SUBMERSIONS

  • Park, Kwang-Soon;Prasad, Rajendra
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.951-962
    • /
    • 2013
  • We introduce semi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds as a generalization of slant submersions, semi-invariant submersions, anti-invariant submersions, etc. We obtain characterizations, investigate the integrability of distributions and the geometry of foliations, etc. We also find a condition for such submersions to be harmonic. Moreover, we give lots of examples.