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SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS

IN A SEMI-RIEMANNIAN SPACE FORM

Dae Ho Jin

Abstract. We study the geometry of lightlike submanifolds of a semi-

Riemannian manifold. The purpose of this paper is to prove two singular

theorems for irrotational lightlike submanifolds M of a semi-Riemannian
space form M̄(c) admitting a semi-symmetric non-metric connection such

that the structure vector field of M̄(c) is tangent to M .

1. Introduction

The theory of lightlike submanifolds is an important topic of research in
differential geometry due to its application in mathematical physics, especially
in the general relativity. The study of such notion was initiated by Duggal and
Bejancu [3] and later studied by many authors (see up-to date results in two
books [4, 7]). Recently many authors have studied lightlike submanifolds M
of indefinite almost contact metric manifolds M̄ (see [5, 6, 7, 8, 14, 16]). The
authors in above papers principally assumed that the structure vector field ζ
of M̄ is tangent to M . Cǎlin proved the following result in his thesis:

• Cǎlin’s result [2]: If the structure vector field ζ of M̄ is tangent to M , then
it belongs to the screen distribution S(TM) of M .

After Cǎlin’s work, many earlier works [5, 6, 7, 14, 16], which have been writ-
ten on lightlike submanifolds of indefinite almost contact metric manifolds,
obtained their results by using the Cǎlin’s result described in above.

The notion of a semi-symmetric non-metric connection on a Riemannian
manifold was introduced by Ageshe and Chafle [1]. Although now we have
lightlike version of a large variety of Riemannian submanifolds, the geometry of
lightlike submanifolds of semi-Riemannian manifolds admitting semi-symmetric
non-metric connections has been few known. Several works ([9]∼[13]), which
have been written on lightlike submanifolds of semi-Riemannian manifolds ad-
mitting semi-symmetric non-metric connections, also obtained their results by

Received February 6, 2014; Accepted May 26, 2014.
2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
Key words and phrases. irrotational, screen quasi-conformal, lightlike submanifold, semi-

symmetric non-metric connection.

c©2014 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

371



372 DAE HO JIN

using the Cǎlin’s result. In this paper, first of all, we prove that the afore cited
Cǎlin’s result is not true for any irrotational lightlike submanifolds of a semi-
Riemannian space form admitting a semi-symmetric non-metric connection.
Next, some authors [8, 16] guessed that two type screen conformalities of M ,
named by screen conformal and screen quasi-conformal, are dependent to each
other. We prove that such two type screen conformalities are independent.

2. Semi-symmetric non-metric connections

Let (M̄, ḡ) be an (m + n)-dimensional semi-Riemannian manifold. A con-
nection ∇̄ on M̄ is called a semi-symmetric non-metric connection [1, 17] if,
for any vector fields X, Y and Z on M̄ , ∇̄ and its torsion tensor T̄ satisfy

(∇̄X ḡ)(Y,Z) = −π(Y )ḡ(X,Z)− π(Z)ḡ(X,Y ), (2.1)

T̄ (X,Y ) = π(Y )X − π(X)Y, (2.2)

where π is a 1-form associated with a non-vanishing smooth vector field ζ,
which is called the structure vector field, of M̄ by π(X) = ḡ(X, ζ).

Let (M, g) be an m-dimensional lightlike submanifold of M̄ . Then the radi-
cal distribution Rad(TM) = TM ∩ TM⊥ is a vector subbundle of the tangent
bundle TM and the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}).
Therefore, in general, there exist two complementary non-degenerate distribu-
tions S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, which
are called the screen and co-screen distributions, such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥), (2.3)

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike sub-
manifold by (M, g, S(TM), S(TM⊥)). Denote by F (M) the algebra of smooth
functions on M , by Γ(E) the F (M) module of smooth sections of a vector
bundle E and by (2.3)i the i-th equation of (2.3). We use same notations for
any others. Let tr(TM) and ltr(TM) be complementary (but not orthogonal)
vector bundles to TM in TM̄|M and TM⊥ in S(TM)⊥ respectively and let
{N1, . . . , Nr} be a lightlike basis of ltr(TM) such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = ḡ(X,Ni) = ḡ(W,Ni) = 0,

for all X ∈ Γ(S(TM)) and W ∈ Γ(S(TM⊥)), where the set {ξ1, · · · , ξr} is a
lightlike basis of Rad(TM). Then TM̄ is decomposed as follows:

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM) (2.4)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM) ⊕orth S(TM⊥).

A lightlike submanifold (M, g, S(TM), S(TM⊥)) of M̄ is called
(1) r-lightlike if 1 ≤ r < min{m, n};
(2) co-isotropic if 1 ≤ r = n < m;
(3) isotropic if 1 ≤ r = m < n;
(4) totally lightlike if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows:
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S(TM⊥) = {0},S(TM) = {0} and S(TM) = S(TM⊥) = {0} respectively.
The geometry of r-lightlike submanifolds is more general form than that of the
other three type submanifolds. For this reason, we consider only r-lightlike
submanifolds M ≡ (M, g, S(TM), S(TM⊥)), with the following local quasi-
orthonormal field of frames of M̄ :

{ξ1, · · · , ξr , N1, · · · , Nr , Fr+1, · · · , Fm , Wr+1, · · · , Wn}, (2.5)

where {Fr+1, · · · , Fm} and {Wr+1, · · · , Wn} are orthonormal bases of S(TM)
and S(TM⊥) respectively. We use the following range of indices:

i, j, k, · · · ∈ {1, · · · , r}, α, β, γ, · · · ∈ {r + 1, · · · , n}

and εα denote the causal character of respective vector field Wα.
In the entire discussion of this article, we shall assume that ζ to be spacelike

unit vector field to M . We take X, Y, Z ∈ Γ(TM) unless otherwise specified.
Let P be the projection morphism of TM on S(TM). Then the local Gauss-

Weingartan formulas M and S(TM) are given respectively by

∇̄XY = ∇XY +

r∑
i=1

h`i(X,Y )Ni +

n∑
α=r+1

hsα(X,Y )Wα, (2.6)

∇̄XNi = −A
Ni
X +

r∑
j=1

τij(X)Nj +

n∑
α=r+1

ρiα(X)Wα, (2.7)

∇̄XWα = −A
Wα
X +

r∑
i=1

φαi(X)Ni +

n∑
β=r+1

θαβ(X)Wβ ; (2.8)

∇XPY = ∇∗XPY +

r∑
i=1

h∗i (X,PY )ξi, (2.9)

∇Xξi = −A∗ξiX −
r∑
j=1

τji(X)ξj , (2.10)

where ∇ and ∇∗ are induced linear connections on TM and S(TM) respec-
tively, h`i and hsα are called the local second fundamental forms on TM respec-
tively, h∗i is called the local second fundamental forms on S(TM). A

Ni
, A∗ξi

and A
Wα

are linear operators on TM , which are called shape operators, and
τij , ρiα, φαi and θαβ are 1-forms on TM . We say that

h(X,Y ) =

r∑
i=1

h`i(X,Y )Ni +

n∑
α=r+1

hsα(X,Y )Wα

is the second fundamental tensor of M . Using (2.1), (2.2) and (2.6), we get

(∇Xg)(Y, Z) = − π(Y )g(X,Z) − π(Z)g(X,Y ) (2.11)

+

r∑
i=1

{h`i(X,Y )ηi(Z) + h`i(X,Z)ηi(Y )},
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T (X,Y ) = π(Y )X − π(X)Y, (2.12)

and h`i and hsα are symmetric on TM for each i and α, where T is the torsion
tensor with respect to ∇ and ηi is a 1-form on TM such that

ηi(X) = ḡ(X,Ni), ∀ i ∈ {1, · · · , r}.

From the facts h`i(X,Y ) = ḡ(∇̄XY, ξi) and hsα(X,Y ) = εαḡ(∇̄XY,Wα), we
know that h`i and hsα are independent of the choice of S(TM). The above local
second fundamental forms are related to their shape operators by

h`i(X,Y ) = g(A∗ξiX,Y )−
r∑
j=1

h`j(X, ξi)ηj(Y ), (2.13)

ḡ(A∗ξiX,Nj) = 0, h`i(X, ξj) + h`j(X, ξi) = 0,

εαh
s
α(X,Y ) = g(A

Wα
X,Y )−

r∑
i=1

φαi(X)ηi(Y ), (2.14)

ḡ(A
Wα
X,Ni) = εαρiα(X), hsα(X, ξi) = −εαφαi(X),

h∗i (X,PY ) = g(A
Ni
X,PY ) + fig(X,PY ) + ηi(X)π(PY ), (2.15)

µij + µji = 0, εβθαβ + εαθβα = 0,

where fi is a smooth function given by fi = π(Ni) and µij is a skew symmetric
1-forms defined by

µij(X) = ηj(ANi
X + fiX) = ḡ(A

Ni
X + fiX,Nj). (2.16)

Now we recall the following results due to Jin:

Theorem 2.1 [12]. Let M be an r-lightlike submanifold of a semi-Riemannian
manifold M̄ admitting a semi-symmetric non-metric connection. Then the
following assertions are equivalent:

(1) A∗ξi are self-adjoint on Γ(TM) with respect to g, for all i.

(2) h`i satisfy h`i(X, ξj) = 0 for all X ∈ Γ(TM), i and j.
(3) A∗ξiξj = 0 for all i and j.

Theorem 2.2 [12]. Let M be an r-lightlike submanifold of a semi-Riemannian
manifold M̄ admitting a semi-symmetric non-metric connection. Then the
following assertions are equivalent:

(1) A
Wα

are self-adjoint on Γ(TM) with respect to g, for all α.
(2) hsα satisfy hsα(X, ξi) = 0 for all X ∈ Γ(S(TM)), α and i.
(3) φαi(X) = 0 for all X ∈ Γ(S(TM)), α and i.

3. Structure equations

Denote by R̄ , R and R∗ the curvature tensors of the connections ∇̄, ∇ and
∇∗ respectively. Using the Gauss -Weingarten formulas for M and S(TM), we
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obtain the Gauss-Codazzi equations for M and S(TM) :

R̄(X,Y )Z = R(X,Y )Z (3.1)

+

r∑
i=1

{h`i(X,Z)A
Ni
Y − h`i(Y, Z)A

Ni
X}

+

n∑
α=r+1

{hsα(X,Z)A
Wα
Y − hsα(Y, Z)A

Wα
X}

+

r∑
i=1

{(∇Xh`i)(Y,Z)− (∇Y h`i)(X,Z)

−π(X)h`i(Y,Z) + π(Y )h`i(X,Z)

+

r∑
j=1

[τji(X)h`j(Y, Z)− τji(Y )h`j(X,Z)]

+

n∑
α=r+1

[φαi(X)hsα(Y,Z)− φαi(Y )hsα(X,Z)]}Ni

+

n∑
α=r+1

{(∇Xhsα)(Y,Z)− (∇Y hsα)(X,Z)

−π(X)hsα(Y, Z) + π(Y )hsα(X,Z)

+

r∑
i=1

[ρiα(X)h`i(Y,Z)− ρiα(Y )h`i(X,Z)}

+

n∑
β=r+1

[θβα(X)hsβ(Y,Z)− θβα(Y )hsβ(X,Z)]}Wα,

R̄(X,Y )Ni = −∇X(A
Ni
Y ) +∇Y (A

Ni
X) +A

Ni
[X, Y ] (3.2)

+

r∑
j=1

{τij(X)A
Nj
Y − τij(Y )A

Nj
X}

+

n∑
α=r+1

{ρiα(X)A
Wα
Y − ρiα(Y )A

Wα
X}

+

r∑
j=1

{h`j(Y,ANi
X)− h`j(X,ANi

Y ) + 2dτij(X,Y )

+

r∑
k=1

[τik(Y )τkj(X)− τik(X)τkj(Y )]

+

n∑
α=r+1

[ρiα(Y )φαj(X)− ρiα(X)φαj(Y )]}Nj
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+

n∑
α=r+1

{hsα(Y,A
Ni
X)− hsα(X,A

Ni
Y ) + 2dρiα(X,Y )

+

r∑
j=1

[τij(Y )ρjα(X)− τij(X)ρjα(Y )]

+

n∑
β=r+1

[ρiβ(Y )θβα(X)− ρiβ(X)θβα(Y )]}Wα,

R̄(X,Y )Wα = −∇X(A
Wα
Y ) +∇Y (A

Wα
X) +A

Wα
[X, Y ] (3.3)

+

r∑
i=1

{φαi(X)A
Ni
Y − φαi(Y )A

Ni
X}

+

n∑
β=r+1

{θαβ(X)A
Wβ
Y − θαβ(Y )A

Wβ
X}

+

r∑
i=1

{h`i(Y,AWα
X)− h`i(X,AWα

Y ) + 2dφαi(X,Y )

+

r∑
j=1

[φαj(Y )τji(X)− φαj(X)τji(Y )]

+

n∑
β=r+1

[θαβ(Y )φβi(X)− θαβ(X)φβi(Y )]}Ni

+

n∑
β=r+1

{hsβ(Y,A
Wα
X)− hsβ(X,A

Wα
Y ) + 2dθαβ(X,Y )

+

r∑
j=1

[φαj(Y )ρjβ(X)− φαj(X)ρjβ(Y )]

+

n∑
γ=r+1

[θαγ(Y )θγβ(X)− θαγ(X)θγβ(Y )]}Wβ ,

R(X,Y )PZ = R∗(X,Y )PZ (3.4)

+

r∑
i=1

{h∗i (X,PZ)A∗ξiY − h
∗
i (Y, PZ)AξiX}

+

r∑
i=1

{(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X,PZ)

+π(Y )h∗i (X,PZ)− π(X)h∗i (Y, PZ)

+

r∑
k=1

[τik(Y )h∗k(X,PZ)− τik(X)h∗k(Y, PZ)]}ξi,
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R(X,Y )ξi = −∇∗X(A∗ξiY ) +∇∗Y (A∗ξiX) +A∗ξi [X, Y ] (3.5)

+

r∑
j=1

{τji(Y )A∗ξjX − τji(X)A∗ξjY }

+

r∑
j=1

{h∗j (Y,A∗ξiX)− h∗j (X,A∗ξiY )− 2dτji(X,Y )

+

r∑
k=1

[τjk(X)τki(Y )− τjk(Y )τki(X)]}ξj .

A complete simply connected semi-Riemannian manifold M̄ of constant cur-
vature c is called a semi-Riemannian space form and denote it by M̄(c). The
curvature tensor R̄ of M̄(c) is given by

R̄(X,Y )Z = c{ḡ(Y, Z)X − ḡ(X,Z)Y }, ∀X, Y, Z ∈ Γ(M̄(c)). (3.6)

In case the ambient manifold M̄ is a semi-Riemannian space form M̄(c).
Taking the scalar product with ξi and Wα to (3.6) by turns, we show that

ḡ(R̄(X,Y )Z, ξi) = ḡ(R̄(X,Y )Z, Wα) = 0, ∀X, Y, Z ∈ Γ(TM).

From this results and (3.1), for any X, Y, Z ∈ Γ(TM), we obtain

R̄(X,Y )Z = R(X,Y )Z +

r∑
i=1

{h`i(X,Z)A
Ni
Y − h`i(Y,Z)A

Ni
X} (3.7)

+

n∑
α=r+1

{hsα(X,Z)A
Wα
Y − hsα(Y,Z)A

Wα
X}.

4. Characterization theorems

Definition 1. An r-lightlike submanifold M of M̄ is said to be irrotational
[15] if ∇̄Xξi ∈ Γ(TM) for any X ∈ Γ(TM) and ξi ∈ Γ(Rad(TM)).

Due to (2.6) and (2.14)3, we show that M is irrotational if and only if

h`j(X, ξi) = 0, hsα(X, ξi) = φαi = 0, ∀ i, j, α. (4.1)

In this case, from (2.13)1, (4.1)1 and the fact S(TM) is non-degenerate, we get

A∗ξiξj = 0, ∀ i, j. (4.2)

It follow from Theorem 2.1 and Theorem 2.2 that the shape operators A∗ξi and
A
Wα

of an irrotational lightlike submanifold M are self-adjoint.

Lemma 4.1 [12] Let M be an irrotational r-lightlike submanifold of a semi-
Riemannian manifold M̄ admitting a semi-symmetric non-metric connection.
If the structure vector field ζ is tangent to M , then ζ satisfies h(X, ζ) = 0.

Note that h(X, ζ) = 0 is equivalent to the following two equations:

h`i(X, ζ) = π(A∗ξiX) = 0, hsα(X, ζ) = π(A
Wα
X) = 0, ∀ i, α. (4.3)
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In case M is an irrotational r-lightlike submanifold of a semi-Riemannian
space form M̄(c) admitting a semi-symmetric non-metric connection, we have
the following equations: Taking the scalar product with ξi to (3.1) and using
(3.6) and the fact φαi = 0, we have

(∇Xh`i)(Y,Z)− (∇Y h`i)(X,Z) = π(X)h`i(Y,Z)− π(Y )h`i(X,Z) (4.4)

+

r∑
j=1

{τji(Y )h`j(X,Z)− τji(X)h`j(Y,Z)}.

Taking the scalar product with Ni to (3.7) and then, substituting (3.4) and
(3.6) into the resulting equation and using (2.14)2 and (2.16), we obtain

c{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )} (4.5)

+

r∑
j=1

{µji(X)h`j(Y, PZ)− µji(Y )h`j(X,PZ)}

−
r∑
j=1

fj{ηi(X)h`j(Y, PZ)− ηi(Y )h`j(X,PZ)}

+

n∑
α=r+1

εα{ρiα(X)hsα(Y, PZ)− ρiα(Y )hsα(X,PZ)}

= (∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X,PZ)

+ π(Y )h∗i (X,PZ)− π(X)h∗i (Y, PZ)

+

r∑
j=1

{τij(Y )h∗j (X,PZ)− τij(X)h∗j (Y, PZ)}.

Definition 2. An r-lightlike submanifold M of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection is called screen quasi-
conformal [8, 16] if the second fundamental forms h∗i and h`i are related by

h∗i (X,PY ) = ϕi h
`
i(X,PY ) + ηi(X)π(PY ), ∀ i, (4.6)

where ϕis are non-vanishing functions on a coordinate neighborhood U in M .

Due to (2.13) and (2.15), we know that an r-lightlike submanifold M of M̄
is screen quasi-conformal if and only if A

Ni
and A∗ξi are related by

A
Ni
X = ϕiA

∗
ξiX − fiX +

r∑
j=1

µij(X)ξj , ∀ i, (4.7)

for some non-vanishing functions ϕi on a coordinate neighborhood U in M .

Theorem 4.2. Let M be an irrotational screen quasi-conformal r-lightlike
submanifolds M of a semi-Riemannian space form M̄(c) admitting a semi-
symmetric non-metric connection. If the structure vector field ζ of M̄ is tangent
to M but it does not belong to S(TM), then c = 1.
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Proof. Taking the scalar product with PZ to (3.2) and (3.7) with Z = ξi by
turns and using (2.13), (2.14), (2.15), (3.5), (4.1) and (4.6), we get

ḡ(R̄(X,Y )Ni, PZ) = g(−∇X(A
Ni
Y ) +∇Y (A

Ni
X) +A

Ni
[X,Y ], PZ)(4.8)

+

r∑
j=1

ϕj{τij(X)h`j(Y, PZ)− τij(Y )h`j(X,PZ)}

+

n∑
α=r+1

εα{ρiα(X)hsα(Y, PZ)− ρiα(Y )hsα(X,PZ)}

−
r∑
j=1

fj{τij(X)g(Y, PZ)− τij(Y )g(X,PZ)},

ḡ(R̄(X,Y )ξi, PZ) = g(−∇∗X(A∗ξiY ) +∇∗Y (A∗ξiX) +A∗ξi [X,Y ], PZ) (4.9)

+

r∑
j=1

{τji(Y )h`j(X,PZ)− τji(X)h`j(Y, PZ)}.

Applying ∇Y to (4.7) and then, taking the scalar product with PZ, we have

g(∇X(A
Ni
Y ), PZ) = X[ϕi]h

`
i(Y, PZ) + ϕi g(∇X(A∗ξiY ), PZ)

−X[fi]g(Y, PZ)− fig(∇XY, PZ)−
r∑
j=1

µij(Y )h`j(X,PZ).

Substituting this into (4.8) and using (3.6), (3.7), (4.1) and (4.9), we get

X[ϕi]h
`
i(Y,Z)− Y [ϕi]h

`
i(X,Z) (4.10)

=

r∑
j=1

{ϕiτji(X) + ϕjτij(X)− µij(Y )}h`j(Y, Z)

−
r∑
j=1

{ϕiτji(Y ) + ϕjτij(Y )− µij(X)}h`j(X,Z)

+

n∑
α=r+1

εα{ρiα(X)hsα(Y, Z)− ρiα(Y )hsα(X,Z)}

+ {X[fi]−
r∑
j=1

fjτij(X)− fiπ(X) + cηi(X)}g(Y,Z)

− {Y [fi]−
r∑
j=1

fjτij(Y )− fiπ(X) + cηi(Y )}g(X,Z).

Taking X = Z = ζ and Y = ξi to this and using (4.3), we have

ξi[fi]−
r∑
j=1

fjτij(ξi) + c = 0. (4.11)
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Applying ∇̄X to ηi(Y ) = ḡ(Y,Ni) and using (2.1), (2.5) and (2.6), we have

X(ηi(Y )) = −π(Y )ηi(X)− fig(X,Y ) + ḡ(∇XY,Ni)

− g(A
Ni
X,Y ) +

r∑
j=1

τij(X)ηj(Y ).

Substituting this into 2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]) and using
(2.12), (4.7) and the fact that each A∗ξi is self-adjoint, we get

2dη(X,Y ) =

r∑
j=1

{τij(X)ηj(Y )− τij(Y )ηj(X)}. (4.12)

Applying ∇X to h∗i (Y, PZ) = ϕih
`
i(Y, PZ) + ηi(Y )π(PZ), we have

(∇Xh∗i )(Y, PZ) = X[ϕi]h
`
i(Y, PZ) + ϕi(∇Xh`i)(Y, PZ)

+ {X(ηi(Y ))− ηi(∇XY )}π(PZ) + ηi(Y ){X(π(PZ))− π(∇∗XPZ)}.

Substituting this into (4.5) and using (2.12), (2.15)2, (4.4), (4.10) and (4.12),
we obtain

r∑
j=1

fj{ηi(Y )h`j(X,PZ)− ηi(X)h`j(Y, PZ)} (4.13)

= {X[fi]−
r∑
j=1

fjτij(X)− fiπ(X)}g(Y, PZ)

− {Y [fi]−
r∑
j=1

fjτij(Y )− fiπ(X)}g(X,PZ)

+ ηi(Y ){X(π(PZ))− π(∇∗XPZ)}
− ηi(X){Y (π(PZ))− π(∇∗Y PZ)}.

Applying ∇X to π(PZ) = g(ζ, PZ) and using (2.11), we have

X(π(PZ))− π(∇∗XPZ)

= − g(X,PZ)− π(X)π(PZ) +

r∑
j=1

fjh
`
j(X,PZ) + g(∇Xζ, PZ).

Substituting this equation into (4.13), we obtain

{X[fi]−
r∑
j=1

fjτij(X)− fiπ(X)}g(Y, PZ) (4.14)

− {Y [fi]−
r∑
j=1

fjτij(Y )− fiπ(X)}g(X,PZ)

= ηi(Y ){g(X,PZ) + π(X)π(PZ)− g(∇Xζ, PZ)}
− ηi(X){g(Y, PZ) + π(Y )π(PZ)− g(∇Y ζ, PZ)}.
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Applying ∇̄X to g(ζ, ζ) = 1 and using (2.1) and (2.5), we have

g(∇Xζ, ζ) = π(X). (4.15)

Taking X = Z = ζ and Y = ξi to (4.14) and using (4.15), we get

ξi[fi]−
r∑
j=1

fjτij(ξi) + 1 = 0. (4.16)

From (4.11) and (4.16), we have c = 1.

Corollary 1. There exist no irrotational screen quasi-conformal r-lightlike
submanifolds M of a semi-Riemannian space form M̄(c) admitting a semi-
symmetric non-metric connection such that ζ belongs to S(TM).

Proof. If ζ belongs to S(TM), then we get fi = ḡ(ζ,Ni) = 0 for all i. It
follows from (4.16) that 1 = 0. It is a contradiction. Thus there exist no irrota-
tional screen quasi-conformal r-lightlike submanifolds M of a semi-Riemannian
space form M̄(c) admitting a semi-symmetric non-metric connection such that
ζ belongs to S(TM).

Remark 1. For any lightlike submanifolds M of indefinite almost contact
metric manifolds M̄ such that the structure vector field ζ of M̄ is tangent to M ,
if ζ belongs to Rad(TM), then ζ is decompose as ζ =

∑r
i=1 aiξi and a 6= 0. It

follow that 1 = ḡ(ζ, ζ) =
∑r
i, j=1 aiaj ḡ(ξi, ξj) = 0. It is a contradiction. Thus ζ

does not belong to Rad(TM). This enables one to choose a screen distribution
S(TM) which contains ζ. Although S(TM) is not unique, it is canonically
isomorphic to the factor vector bundle S(TM)] = TM/Rad(TM) [15]. Thus all
screen distributions are mutually isomorphic. This implies that if ζ is tangent
to M , then it belongs to S(TM). Cǎlin [2] proved this result. Duggal and
Sahin also proved this result in their book (see p.318 - 319 of [7]). After Cǎlin’s
work, many earlier works [5, 6, 7, 14, 16], which have been written on lightlike
submanifolds of indefinite almost contact manifolds or lightlike submanifolds of
semi-Riemannian manifolds admitting semi-symmetric non-metric connections,
obtained their results by using the Cǎlin’s result. However, we regret to indicate
that the above Cǎlin’s result is not true for any lightlike submanifolds M of
a semi-Riemannian space form M̄(c) admitting a semi-symmetric non-metric
connection by Theorem 4.2 and its corollary.

Definition 3. An r-lightlike submanifold M is screen conformal [4, 7, 10] if
the second fundamental forms B and C satisfy

h∗i (X,PY ) = ϕi h
`
i(X,PY ), ∀ i, (4.17)

where ϕis are non-vanishing functions on a coordinate neighborhood U in M .
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Theorem 4.3. Let M be an irrotational r-lightlike submanifold of a semi-
Riemannian space form M̄(c) admitting a semi-symmetric non-metric connec-
tion such that the structure vector field ζ of M̄ is tangent to M . If M is screen
conformal, then we have c = 0.

Proof. Applying ∇X to h∗i (Y, PZ) = ϕih
`
i(Y, PZ), we have

(∇Xh∗i )(Y, PZ) = X[ϕi]h
`
i(Y, PZ) + ϕi(∇Xh`i)(Y, PZ).

Substituting this equation into (4.5) and using (4.4) and (4.17), we have

c{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}
= X[ϕi]h

`
i(Y, PZ)− Y [ϕi]h

`
i(X,PZ)

+

r∑
j=1

{ϕiτji(Y ) + ϕjτij(Y ) + µij(Y ) + fjηi(Y )}g(X,PZ)

−
r∑
j=1

{ϕiτji(X) + ϕjτij(X) + µij(X) + fjηi(X)}g(Y, PZ)

+

n∑
α=r+1

εα{ρiα(Y )hsα(X,PZ)− ρiα(X)hsα(Y, PZ).

Taking X = ξi and Y = Z = ζ to this and using (4.3), we have c = 0.

Remark 2. From Theorem 4.2 and Theorem 4.3, we show that two type screen
conformalities of M , named by screen conformal and screen quasi-conformal,
are not mutually dependent to each other but mutually independent.
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