# SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM 

Dae Ho Jin


#### Abstract

We study the geometry of lightlike submanifolds of a semiRiemannian manifold. The purpose of this paper is to prove two singular theorems for irrotational lightlike submanifolds $M$ of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field of $\bar{M}(c)$ is tangent to $M$.


## 1. Introduction

The theory of lightlike submanifolds is an important topic of research in differential geometry due to its application in mathematical physics, especially in the general relativity. The study of such notion was initiated by Duggal and Bejancu [3] and later studied by many authors (see up-to date results in two books [4, 7]). Recently many authors have studied lightlike submanifolds $M$ of indefinite almost contact metric manifolds $\bar{M}$ (see $[5,6,7,8,14,16]$ ). The authors in above papers principally assumed that the structure vector field $\zeta$ of $\bar{M}$ is tangent to $M$. Cǎlin proved the following result in his thesis:

- Călin's result [2]: If the structure vector field $\zeta$ of $\bar{M}$ is tangent to $M$, then it belongs to the screen distribution $S(T M)$ of $M$.

After Cǎlin's work, many earlier works [5, 6, 7, 14, 16], which have been written on lightlike submanifolds of indefinite almost contact metric manifolds, obtained their results by using the Cǎlin's result described in above.

The notion of a semi-symmetric non-metric connection on a Riemannian manifold was introduced by Ageshe and Chafle [1]. Although now we have lightlike version of a large variety of Riemannian submanifolds, the geometry of lightlike submanifolds of semi-Riemannian manifolds admitting semi-symmetric non-metric connections has been few known. Several works ([9]~[13]), which have been written on lightlike submanifolds of semi-Riemannian manifolds admitting semi-symmetric non-metric connections, also obtained their results by

[^0]using the Cǎlin's result. In this paper, first of all, we prove that the afore cited Cǎlin's result is not true for any irrotational lightlike submanifolds of a semiRiemannian space form admitting a semi-symmetric non-metric connection. Next, some authors $[8,16]$ guessed that two type screen conformalities of $M$, named by screen conformal and screen quasi-conformal, are dependent to each other. We prove that such two type screen conformalities are independent.

## 2. Semi-symmetric non-metric connections

Let $(\bar{M}, \bar{g})$ be an $(m+n)$-dimensional semi-Riemannian manifold. A connection $\bar{\nabla}$ on $\bar{M}$ is called a semi-symmetric non-metric connection [1, 17] if, for any vector fields $X, Y$ and $Z$ on $\bar{M}, \bar{\nabla}$ and its torsion tensor $\bar{T}$ satisfy

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \bar{g}\right)(Y, Z)=-\pi(Y) \bar{g}(X, Z)-\pi(Z) \bar{g}(X, Y),  \tag{2.1}\\
\bar{T}(X, Y)=\pi(Y) X-\pi(X) Y \tag{2.2}
\end{gather*}
$$

where $\pi$ is a 1 -form associated with a non-vanishing smooth vector field $\zeta$, which is called the structure vector field, of $\bar{M}$ by $\pi(X)=\bar{g}(\underline{X}, \zeta)$.

Let $(M, g)$ be an $m$-dimensional lightlike submanifold of $\bar{M}$. Then the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ is a vector subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$, of rank $r(1 \leq r \leq \min \{m, n\})$. Therefore, in general, there exist two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, which are called the screen and co-screen distributions, such that

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{o r t h} S\left(T M^{\perp}\right) \tag{2.3}
\end{equation*}
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a lightlike submanifold by $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$. Denote by $F(M)$ the algebra of smooth functions on $M$, by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle $E$ and by $(2.3)_{i}$ the $i$-th equation of (2.3). We use same notations for any others. Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary (but not orthogonal) vector bundles to $T M$ in $T \bar{M}_{\mid M}$ and $T M^{\perp}$ in $S(T M)^{\perp}$ respectively and let $\left\{N_{1}, \ldots, N_{r}\right\}$ be a lightlike basis of $\operatorname{ltr}(T M)$ such that

$$
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=\bar{g}\left(X, N_{i}\right)=\bar{g}\left(W, N_{i}\right)=0
$$

for all $X \in \Gamma(S(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, where the set $\left\{\xi_{1}, \cdots, \xi_{r}\right\}$ is a lightlike basis of $\operatorname{Rad}(T M)$. Then $T \bar{M}$ is decomposed as follows:

$$
\begin{align*}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M)  \tag{2.4}\\
& =\{\operatorname{Rad}(T M) \oplus l \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) .
\end{align*}
$$

A lightlike submanifold $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ of $\bar{M}$ is called
(1) $r$-lightlike if $1 \leq r<\min \{m, n\}$;
(2) co-isotropic if $1 \leq r=n<m$;
(3) isotropic if $1 \leq \bar{r}=m<n$;
(4) totally lightlike if $1 \leq r=m=n$.

The above three classes $(2) \sim(4)$ are particular cases of the class $(1)$ as follows:
$S\left(T M^{\perp}\right)=\{0\}, S(T M)=\{0\}$ and $S(T M)=S\left(T M^{\perp}\right)=\{0\}$ respectively. The geometry of $r$-lightlike submanifolds is more general form than that of the other three type submanifolds. For this reason, we consider only $r$-lightlike submanifolds $M \equiv\left(M, g, S(T M), S\left(T M^{\perp}\right)\right.$, with the following local quasiorthonormal field of frames of $\bar{M}$ :

$$
\begin{equation*}
\left\{\xi_{1}, \cdots, \xi_{r}, N_{1}, \cdots, N_{r}, F_{r+1}, \cdots, F_{m}, W_{r+1}, \cdots, W_{n}\right\} \tag{2.5}
\end{equation*}
$$

where $\left\{F_{r+1}, \cdots, F_{m}\right\}$ and $\left\{W_{r+1}, \cdots, W_{n}\right\}$ are orthonormal bases of $S(T M)$ and $S\left(T M^{\perp}\right)$ respectively. We use the following range of indices:

$$
i, j, k, \cdots \in\{1, \cdots, r\}, \quad \alpha, \beta, \gamma, \cdots \in\{r+1, \cdots, n\}
$$

and $\epsilon_{\alpha}$ denote the causal character of respective vector field $W_{\alpha}$.
In the entire discussion of this article, we shall assume that $\zeta$ to be spacelike unit vector field to $M$. We take $X, Y, Z \in \Gamma(T M)$ unless otherwise specified.

Let $P$ be the projection morphism of $T M$ on $S(T M)$. Then the local GaussWeingartan formulas $M$ and $S(T M)$ are given respectively by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Y) W_{\alpha}  \tag{2.6}\\
\bar{\nabla}_{X} N_{i}=-A_{N_{i}} X+\sum_{j=1}^{r} \tau_{i j}(X) N_{j}+\sum_{\alpha=r+1}^{n} \rho_{i \alpha}(X) W_{\alpha}  \tag{2.7}\\
\bar{\nabla}_{X} W_{\alpha}=-A_{W_{\alpha}} X+\sum_{i=1}^{r} \phi_{\alpha i}(X) N_{i}+\sum_{\beta=r+1}^{n} \theta_{\alpha \beta}(X) W_{\beta}  \tag{2.8}\\
\nabla_{X} P Y=\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i}  \tag{2.9}\\
\nabla_{X} \xi_{i}=-A_{\xi_{i}}^{*} X-\sum_{j=1}^{r} \tau_{j i}(X) \xi_{j} \tag{2.10}
\end{gather*}
$$

where $\nabla$ and $\nabla^{*}$ are induced linear connections on $T M$ and $S(T M)$ respectively, $h_{i}^{\ell}$ and $h_{\alpha}^{s}$ are called the local second fundamental forms on $T M$ respectively, $h_{i}^{*}$ is called the local second fundamental forms on $S(T M)$. $A_{N_{i}}, A_{\xi_{i}}^{*}$ and $A_{W_{\alpha}}$ are linear operators on $T M$, which are called shape operators, and $\tau_{i j}, \rho_{i \alpha}, \phi_{\alpha i}$ and $\theta_{\alpha \beta}$ are 1 -forms on $T M$. We say that

$$
h(X, Y)=\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Y) W_{\alpha}
$$

is the second fundamental tensor of $M$. Using (2.1), (2.2) and (2.6), we get

$$
\begin{align*}
\left(\nabla_{X} g\right)(Y, Z)= & -\pi(Y) g(X, Z)-\pi(Z) g(X, Y)  \tag{2.11}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Y) \eta_{i}(Z)+h_{i}^{\ell}(X, Z) \eta_{i}(Y)\right\}
\end{align*}
$$

$$
\begin{equation*}
T(X, Y)=\pi(Y) X-\pi(X) Y \tag{2.12}
\end{equation*}
$$

and $h_{i}^{\ell}$ and $h_{\alpha}^{s}$ are symmetric on $T M$ for each $i$ and $\alpha$, where $T$ is the torsion tensor with respect to $\nabla$ and $\eta_{i}$ is a 1-form on $T M$ such that

$$
\eta_{i}(X)=\bar{g}\left(X, N_{i}\right), \quad \forall i \in\{1, \cdots, r\} .
$$

From the facts $h_{i}^{\ell}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi_{i}\right)$ and $h_{\alpha}^{s}(X, Y)=\epsilon_{\alpha} \bar{g}\left(\bar{\nabla}_{X} Y, W_{\alpha}\right)$, we know that $h_{i}^{\ell}$ and $h_{\alpha}^{s}$ are independent of the choice of $S(T M)$. The above local second fundamental forms are related to their shape operators by

$$
\begin{align*}
& h_{i}^{\ell}(X, Y)=g\left(A_{\xi_{i}}^{*} X, Y\right)-\sum_{j=1}^{r} h_{j}^{\ell}\left(X, \xi_{i}\right) \eta_{j}(Y),  \tag{2.13}\\
& \quad \bar{g}\left(A_{\xi_{i}}^{*} X, N_{j}\right)=0, \quad h_{i}^{\ell}\left(X, \xi_{j}\right)+h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \\
& \epsilon_{\alpha} h_{\alpha}^{s}(X, Y)=g\left(A_{W_{\alpha}} X, Y\right)-\sum_{i=1}^{r} \phi_{\alpha i}(X) \eta_{i}(Y),  \tag{2.14}\\
& \quad \bar{g}\left(A_{W_{\alpha}} X, N_{i}\right)=\epsilon_{\alpha} \rho_{i \alpha}(X), \quad h_{\alpha}^{s}\left(X, \xi_{i}\right)=-\epsilon_{\alpha} \phi_{\alpha i}(X), \\
& h_{i}^{*}(X, P Y)=g\left(A_{N_{i}} X, P Y\right)+f_{i} g(X, P Y)+\eta_{i}(X) \pi(P Y),  \tag{2.15}\\
& \quad \mu_{i j}+\mu_{j i}=0, \quad \epsilon_{\beta} \theta_{\alpha \beta}+\epsilon_{\alpha} \theta_{\beta \alpha}=0,
\end{align*}
$$

where $f_{i}$ is a smooth function given by $f_{i}=\pi\left(N_{i}\right)$ and $\mu_{i j}$ is a skew symmetric 1-forms defined by

$$
\begin{equation*}
\mu_{i j}(X)=\eta_{j}\left(A_{N_{i}} X+f_{i} X\right)=\bar{g}\left(A_{N_{i}} X+f_{i} X, N_{j}\right) \tag{2.16}
\end{equation*}
$$

Now we recall the following results due to Jin:
Theorem 2.1 [12]. Let $M$ be an r-lightlike submanifold of a semi-Riemannian manifold $\bar{M}$ admitting a semi-symmetric non-metric connection. Then the following assertions are equivalent:
(1) $A_{\xi_{i}}^{*}$ are self-adjoint on $\Gamma(T M)$ with respect to $g$, for all $i$.
(2) $h_{i}^{\ell}$ satisfy $h_{i}^{\ell}\left(X, \xi_{j}\right)=0$ for all $X \in \Gamma(T M)$, $i$ and $j$.
(3) $A_{\xi_{i}}^{*} \xi_{j}=0$ for all $i$ and $j$.

Theorem 2.2 [12]. Let $M$ be an r-lightlike submanifold of a semi-Riemannian manifold $\bar{M}$ admitting a semi-symmetric non-metric connection. Then the following assertions are equivalent:
(1) $A_{W_{\alpha}}$ are self-adjoint on $\Gamma(T M)$ with respect to $g$, for all $\alpha$.
(2) $h_{\alpha}^{s}$ satisfy $h_{\alpha}^{s}\left(X, \xi_{i}\right)=0$ for all $X \in \Gamma(S(T M))$, $\alpha$ and $i$.
(3) $\phi_{\alpha i}(X)=0$ for all $X \in \Gamma(S(T M)), \alpha$ and $i$.

## 3. Structure equations

Denote by $\bar{R}, R$ and $R^{*}$ the curvature tensors of the connections $\bar{\nabla}, \nabla$ and $\nabla^{*}$ respectively. Using the Gauss-Weingarten formulas for $M$ and $S(T M)$, we
obtain the Gauss-Codazzi equations for $M$ and $S(T M)$ :

$$
\begin{align*}
& \bar{R}(X, Y) Z=R(X, Y) Z  \tag{3.1}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y-h_{i}^{\ell}(Y, Z) A_{N_{i}} X\right\} \\
& +\sum_{\alpha=r+1}^{n}\left\{h_{\alpha}^{s}(X, Z) A_{W_{\alpha}} Y-h_{\alpha}^{s}(Y, Z) A_{W_{\alpha}} X\right\} \\
& +\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)\right. \\
& -\pi(X) h_{i}^{\ell}(Y, Z)+\pi(Y) h_{i}^{\ell}(X, Z) \\
& +\sum_{j=1}^{r}\left[\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right] \\
& \left.+\sum_{\alpha=r+1}^{n}\left[\phi_{\alpha i}(X) h_{\alpha}^{s}(Y, Z)-\phi_{\alpha i}(Y) h_{\alpha}^{s}(X, Z)\right]\right\} N_{i} \\
& +\sum_{\alpha=r+1}^{n}\left\{\left(\nabla_{X} h_{\alpha}^{s}\right)(Y, Z)-\left(\nabla_{Y} h_{\alpha}^{s}\right)(X, Z)\right. \\
& -\pi(X) h_{\alpha}^{s}(Y, Z)+\pi(Y) h_{\alpha}^{s}(X, Z) \\
& +\sum_{i=1}^{r}\left[\rho_{i \alpha}(X) h_{i}^{\ell}(Y, Z)-\rho_{i \alpha}(Y) h_{i}^{\ell}(X, Z)\right\} \\
& \left.+\sum_{\beta=r+1}^{n}\left[\theta_{\beta \alpha}(X) h_{\beta}^{s}(Y, Z)-\theta_{\beta \alpha}(Y) h_{\beta}^{s}(X, Z)\right]\right\} W_{\alpha}, \\
& \bar{R}(X, Y) N_{i}=-\nabla_{X}\left(A_{N_{i}} Y\right)+\nabla_{Y}\left(A_{N_{i}} X\right)+A_{N_{i}}[X, Y]  \tag{3.2}\\
& +\sum_{j=1}^{r}\left\{\tau_{i j}(X) A_{N_{j}} Y-\tau_{i j}(Y) A_{N_{j}} X\right\} \\
& +\sum_{\alpha=r+1}^{n}\left\{\rho_{i \alpha}(X) A_{W_{\alpha}} Y-\rho_{i \alpha}(Y) A_{W_{\alpha}} X\right\} \\
& +\sum_{j=1}^{r}\left\{h_{j}^{\ell}\left(Y, A_{N_{i}} X\right)-h_{j}^{\ell}\left(X, A_{N_{i}} Y\right)+2 d \tau_{i j}(X, Y)\right. \\
& +\sum_{k=1}^{r}\left[\tau_{i k}(Y) \tau_{k j}(X)-\tau_{i k}(X) \tau_{k j}(Y)\right] \\
& \left.+\sum_{\alpha=r+1}^{n}\left[\rho_{i \alpha}(Y) \phi_{\alpha j}(X)-\rho_{i \alpha}(X) \phi_{\alpha j}(Y)\right]\right\} N_{j}
\end{align*}
$$

$$
\begin{align*}
+ & \sum_{\alpha=r+1}^{n}\left\{h_{\alpha}^{s}\left(Y, A_{N_{i}} X\right)-h_{\alpha}^{s}\left(X, A_{N_{i}} Y\right)+2 d \rho_{i \alpha}(X, Y)\right. \\
& +\sum_{j=1}^{r}\left[\tau_{i j}(Y) \rho_{j \alpha}(X)-\tau_{i j}(X) \rho_{j \alpha}(Y)\right] \\
& \left.+\sum_{\beta=r+1}^{n}\left[\rho_{i \beta}(Y) \theta_{\beta \alpha}(X)-\rho_{i \beta}(X) \theta_{\beta \alpha}(Y)\right]\right\} W_{\alpha}, \\
& +\sum_{i=1}^{r}\left\{\phi_{\alpha i}(X) A_{N_{i}} Y-\phi_{\alpha i}(Y) A_{N_{i}} X\right\}  \tag{3.3}\\
& +\sum_{\beta=r+1}^{n}\left\{\theta_{\alpha \beta}(X) A_{W_{\beta}} Y-\theta_{\alpha \beta}(Y) A_{W_{\beta}} X\right\} \\
+ & \sum_{i=1}^{r}\left\{h_{i}^{\ell}\left(Y, A_{W_{\alpha}} X\right)-h_{i}^{\ell}\left(X, A_{W_{\alpha}} Y\right)+2 d \phi_{\alpha i}(X, Y)\right. \\
& +\sum_{j=1}^{r}\left[\phi_{\alpha j}(Y) \tau_{j i}(X)-\phi_{\alpha j}(X) \tau_{j i}(Y)\right] \\
& \left.+\sum_{\beta=r+1}^{n}\left[\theta_{\alpha \beta}(Y) \phi_{\beta i}(X)-\theta_{\alpha \beta}(X) \phi_{\beta i}(Y)\right]\right\} N_{i} \\
& \left.+\sum_{k=1}\left[\tau_{i k}(Y) h_{k}^{*}(X, P Z)-\tau_{i k}(X) h_{k}^{*}(Y, P Z)\right]\right\} \xi_{i}, \\
+ & \sum_{\beta=r+1}^{n}\left\{h_{\beta}^{s}\left(Y, A_{W_{\alpha}} X\right)-h_{\beta}^{s}\left(X, A_{W_{\alpha}} Y\right)+2 d \theta_{\alpha \beta}(X, Y)\right. \\
& +\sum_{j=1}^{r}\left[\phi_{\alpha j}(Y) \rho_{j \beta}(X)-\phi_{\alpha j}(X) \rho_{j \beta}(Y)\right] \\
& \left.+\sum_{\gamma=r+1}^{n}\left[\theta_{\alpha \gamma}(Y) \theta_{\gamma \beta}(X)-\theta_{\alpha \gamma}(X) \theta_{\gamma \beta}(Y)\right]\right\} W_{\beta}, \\
& +\sum_{i=1}^{r}\left\{h_{i}^{*}(X, P Z) A_{\xi_{i}}^{*} Y-h_{i}^{*}(Y, P Z) A_{\xi_{i}} X\right\}  \tag{3.4}\\
+ & \sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z)\right. \\
& +(Y) h_{i}^{*}(X, P Z)-\pi(X) h_{i}^{*}(Y, P Z) \\
& =R^{*}(X, Y) P Z
\end{align*}
$$

$$
\begin{align*}
R(X, Y) \xi_{i}= & -\nabla_{X}^{*}\left(A_{\xi_{i}}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi_{i}}^{*} X\right)+A_{\xi_{i}}^{*}[X, Y]  \tag{3.5}\\
& +\sum_{j=1}^{r}\left\{\tau_{j i}(Y) A_{\xi_{j}}^{*} X-\tau_{j i}(X) A_{\xi_{j}}^{*} Y\right\} \\
+ & \sum_{j=1}^{r}\left\{h_{j}^{*}\left(Y, A_{\xi_{i}}^{*} X\right)-h_{j}^{*}\left(X, A_{\xi_{i}}^{*} Y\right)-2 d \tau_{j i}(X, Y)\right. \\
& \left.+\sum_{k=1}^{r}\left[\tau_{j k}(X) \tau_{k i}(Y)-\tau_{j k}(Y) \tau_{k i}(X)\right]\right\} \xi_{j}
\end{align*}
$$

A complete simply connected semi-Riemannian manifold $\bar{M}$ of constant curvature $c$ is called a semi-Riemannian space form and denote it by $\bar{M}(c)$. The curvature tensor $\bar{R}$ of $\bar{M}(c)$ is given by

$$
\begin{equation*}
\bar{R}(X, Y) Z=c\{\bar{g}(Y, Z) X-\bar{g}(X, Z) Y\}, \quad \forall X, Y, Z \in \Gamma(\bar{M}(c)) \tag{3.6}
\end{equation*}
$$

In case the ambient manifold $\bar{M}$ is a semi-Riemannian space form $\bar{M}(c)$. Taking the scalar product with $\xi_{i}$ and $W_{\alpha}$ to (3.6) by turns, we show that

$$
\bar{g}\left(\bar{R}(X, Y) Z, \xi_{i}\right)=\bar{g}\left(\bar{R}(X, Y) Z, W_{\alpha}\right)=0, \quad \forall X, Y, Z \in \Gamma(T M)
$$

From this results and (3.1), for any $X, Y, Z \in \Gamma(T M)$, we obtain

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y-h_{i}^{\ell}(Y, Z) A_{N_{i}} X\right\}  \tag{3.7}\\
& +\sum_{\alpha=r+1}^{n}\left\{h_{\alpha}^{s}(X, Z) A_{W_{\alpha}} Y-h_{\alpha}^{s}(Y, Z) A_{W_{\alpha}} X\right\}
\end{align*}
$$

## 4. Characterization theorems

Definition 1. An $r$-lightlike submanifold $M$ of $\bar{M}$ is said to be irrotational [15] if $\bar{\nabla}_{X} \xi_{i} \in \Gamma(T M)$ for any $X \in \Gamma(T M)$ and $\xi_{i} \in \Gamma(\operatorname{Rad}(T M))$.

Due to (2.6) and $(2.14)_{3}$, we show that $M$ is irrotational if and only if

$$
\begin{equation*}
h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{\alpha}^{s}\left(X, \xi_{i}\right)=\phi_{\alpha i}=0, \quad \forall i, j, \alpha \tag{4.1}
\end{equation*}
$$

In this case, from $(2.13)_{1},(4.1)_{1}$ and the fact $S(T M)$ is non-degenerate, we get

$$
\begin{equation*}
A_{\xi_{i}}^{*} \xi_{j}=0, \quad \forall i, j \tag{4.2}
\end{equation*}
$$

It follow from Theorem 2.1 and Theorem 2.2 that the shape operators $A_{\xi_{i}}^{*}$ and $A_{W_{\alpha}}$ of an irrotational lightlike submanifold $M$ are self-adjoint.
Lemma 4.1 [12] Let $M$ be an irrotational r-lightlike submanifold of a semiRiemannian manifold $\bar{M}$ admitting a semi-symmetric non-metric connection. If the structure vector field $\zeta$ is tangent to $M$, then $\zeta$ satisfies $h(X, \zeta)=0$.

Note that $h(X, \zeta)=0$ is equivalent to the following two equations:

$$
\begin{equation*}
h_{i}^{\ell}(X, \zeta)=\pi\left(A_{\xi_{i}}^{*} X\right)=0, \quad h_{\alpha}^{s}(X, \zeta)=\pi\left(A_{W_{\alpha}} X\right)=0, \quad \forall i, \alpha . \tag{4.3}
\end{equation*}
$$

In case $M$ is an irrotational $r$-lightlike submanifold of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection, we have the following equations: Taking the scalar product with $\xi_{i}$ to (3.1) and using (3.6) and the fact $\phi_{\alpha i}=0$, we have

$$
\begin{array}{r}
\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)=\pi(X) h_{i}^{\ell}(Y, Z)-\pi(Y) h_{i}^{\ell}(X, Z)  \tag{4.4}\\
+\sum_{j=1}^{r}\left\{\tau_{j i}(Y) h_{j}^{\ell}(X, Z)-\tau_{j i}(X) h_{j}^{\ell}(Y, Z)\right\}
\end{array}
$$

Taking the scalar product with $N_{i}$ to (3.7) and then, substituting (3.4) and (3.6) into the resulting equation and using $(2.14)_{2}$ and (2.16), we obtain

$$
\begin{align*}
& c\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\}  \tag{4.5}\\
& \quad+\sum_{j=1}^{r}\left\{\mu_{j i}(X) h_{j}^{\ell}(Y, P Z)-\mu_{j i}(Y) h_{j}^{\ell}(X, P Z)\right\} \\
& \quad-\sum_{j=1}^{r} f_{j}\left\{\eta_{i}(X) h_{j}^{\ell}(Y, P Z)-\eta_{i}(Y) h_{j}^{\ell}(X, P Z)\right\} \\
& \quad+\sum_{\alpha=r+1}^{n} \epsilon_{\alpha}\left\{\rho_{i \alpha}(X) h_{\alpha}^{s}(Y, P Z)-\rho_{i \alpha}(Y) h_{\alpha}^{s}(X, P Z)\right\} \\
& =\left(\nabla h_{i}^{*}\right)(Y, P Z)-\left(\nabla{ }_{Y} h_{i}^{*}\right)(X, P Z) \\
& \quad+\pi(Y) h_{i}^{*}(X, P Z)-\pi(X) h_{i}^{*}(Y, P Z) \\
& \quad+\sum_{j=1}^{r}\left\{\tau_{i j}(Y) h_{j}^{*}(X, P Z)-\tau_{i j}(X) h_{j}^{*}(Y, P Z)\right\} .
\end{align*}
$$

Definition 2. An $r$-lightlike submanifold $M$ of a semi-Riemannian manifold $\bar{M}$ admitting a semi-symmetric non-metric connection is called screen quasiconformal $[8,16]$ if the second fundamental forms $h_{i}^{*}$ and $h_{i}^{\ell}$ are related by

$$
\begin{equation*}
h_{i}^{*}(X, P Y)=\varphi_{i} h_{i}^{\ell}(X, P Y)+\eta_{i}(X) \pi(P Y), \quad \forall i, \tag{4.6}
\end{equation*}
$$

where $\varphi_{i}$ s are non-vanishing functions on a coordinate neighborhood $\mathcal{U}$ in $M$.
Due to (2.13) and (2.15), we know that an $r$-lightlike submanifold $M$ of $\bar{M}$ is screen quasi-conformal if and only if $A_{N_{i}}$ and $A_{\xi_{i}}^{*}$ are related by

$$
\begin{equation*}
A_{N_{i}} X=\varphi_{i} A_{\xi_{i}}^{*} X-f_{i} X+\sum_{j=1}^{r} \mu_{i j}(X) \xi_{j}, \quad \forall i \tag{4.7}
\end{equation*}
$$

for some non-vanishing functions $\varphi_{i}$ on a coordinate neighborhood $\mathcal{U}$ in $M$.
Theorem 4.2. Let $M$ be an irrotational screen quasi-conformal r-lightlike submanifolds $M$ of a semi-Riemannian space form $\bar{M}(c)$ admitting a semisymmetric non-metric connection. If the structure vector field $\zeta$ of $\bar{M}$ is tangent to $M$ but it does not belong to $S(T M)$, then $c=1$.

Proof. Taking the scalar product with $P Z$ to (3.2) and (3.7) with $Z=\xi_{i}$ by turns and using (2.13), (2.14), (2.15), (3.5), (4.1) and (4.6), we get

$$
\begin{aligned}
\bar{g}\left(\bar{R}(X, Y) N_{i}, P Z\right) & =g\left(-\nabla_{X}\left(A_{N_{i}} Y\right)+\nabla_{Y}\left(A_{N_{i}} X\right)+A_{N_{i}}[X, Y], P Z 4.8\right) \\
& +\sum_{j=1}^{r} \varphi_{j}\left\{\tau_{i j}(X) h_{j}^{\ell}(Y, P Z)-\tau_{i j}(Y) h_{j}^{\ell}(X, P Z)\right\} \\
& +\sum_{\alpha=r+1}^{n} \epsilon_{\alpha}\left\{\rho_{i \alpha}(X) h_{\alpha}^{s}(Y, P Z)-\rho_{i \alpha}(Y) h_{\alpha}^{s}(X, P Z)\right\} \\
& -\sum_{j=1}^{r} f_{j}\left\{\tau_{i j}(X) g(Y, P Z)-\tau_{i j}(Y) g(X, P Z)\right\} \\
\bar{g}\left(\bar{R}(X, Y) \xi_{i}, P Z\right)= & g\left(-\nabla_{X}^{*}\left(A_{\xi_{i}}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi_{i}}^{*} X\right)+A_{\xi_{i}}^{*}[X, Y], P Z\right)(4.9) \\
& +\sum_{j=1}^{r}\left\{\tau_{j i}(Y) h_{j}^{\ell}(X, P Z)-\tau_{j i}(X) h_{j}^{\ell}(Y, P Z)\right\}
\end{aligned}
$$

Applying $\nabla_{Y}$ to (4.7) and then, taking the scalar product with $P Z$, we have

$$
\begin{aligned}
& g\left(\nabla_{X}\left(A_{N_{i}} Y\right), P Z\right)=X\left[\varphi_{i}\right] h_{i}^{\ell}(Y, P Z)+\varphi_{i} g\left(\nabla_{X}\left(A_{\xi_{i}}^{*} Y\right), P Z\right) \\
& \quad-X\left[f_{i}\right] g(Y, P Z)-f_{i} g\left(\nabla_{X} Y, P Z\right)-\sum_{j=1}^{r} \mu_{i j}(Y) h_{j}^{\ell}(X, P Z)
\end{aligned}
$$

Substituting this into (4.8) and using (3.6), (3.7), (4.1) and (4.9), we get

$$
\begin{align*}
& X\left[\varphi_{i}\right] h_{i}^{\ell}(Y, Z)-Y\left[\varphi_{i}\right] h_{i}^{\ell}(X, Z)  \tag{4.10}\\
& =\sum_{j=1}^{r}\left\{\varphi_{i} \tau_{j i}(X)+\varphi_{j} \tau_{i j}(X)-\mu_{i j}(Y)\right\} h_{j}^{\ell}(Y, Z) \\
& -\sum_{j=1}^{r}\left\{\varphi_{i} \tau_{j i}(Y)+\varphi_{j} \tau_{i j}(Y)-\mu_{i j}(X)\right\} h_{j}^{\ell}(X, Z) \\
& +\sum_{\alpha=r+1}^{n} \epsilon_{\alpha}\left\{\rho_{i \alpha}(X) h_{\alpha}^{s}(Y, Z)-\rho_{i \alpha}(Y) h_{\alpha}^{s}(X, Z)\right\} \\
& +\left\{X\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}(X)-f_{i} \pi(X)+c \eta_{i}(X)\right\} g(Y, Z) \\
& -\left\{Y\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}(Y)-f_{i} \pi(X)+c \eta_{i}(Y)\right\} g(X, Z)
\end{align*}
$$

Taking $X=Z=\zeta$ and $Y=\xi_{i}$ to this and using (4.3), we have

$$
\begin{equation*}
\xi_{i}\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}\left(\xi_{i}\right)+c=0 \tag{4.11}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\eta_{i}(Y)=\bar{g}\left(Y, N_{i}\right)$ and using (2.1), (2.5) and (2.6), we have

$$
\begin{aligned}
X\left(\eta_{i}(Y)\right)= & -\pi(Y) \eta_{i}(X)-f_{i} g(X, Y)+\bar{g}\left(\nabla_{X} Y, N_{i}\right) \\
& -g\left(A_{N_{i}} X, Y\right)+\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y) .
\end{aligned}
$$

Substituting this into $2 d \eta(X, Y)=X(\eta(Y))-Y(\eta(X))-\eta([X, Y])$ and using (2.12), (4.7) and the fact that each $A_{\xi_{i}}^{*}$ is self-adjoint, we get

$$
\begin{equation*}
2 d \eta(X, Y)=\sum_{j=1}^{r}\left\{\tau_{i j}(X) \eta_{j}(Y)-\tau_{i j}(Y) \eta_{j}(X)\right\} \tag{4.12}
\end{equation*}
$$

Applying $\nabla_{X}$ to $h_{i}^{*}(Y, P Z)=\varphi_{i} h_{i}^{\ell}(Y, P Z)+\eta_{i}(Y) \pi(P Z)$, we have

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)=X\left[\varphi_{i}\right] h_{i}^{\ell}(Y, P Z)+\varphi_{i}\left(\nabla_{X} h_{i}^{\ell}\right)(Y, P Z) \\
& \quad+\left\{X\left(\eta_{i}(Y)\right)-\eta_{i}\left(\nabla_{X} Y\right)\right\} \pi(P Z)+\eta_{i}(Y)\left\{X(\pi(P Z))-\pi\left(\nabla_{X}^{*} P Z\right)\right\}
\end{aligned}
$$

Substituting this into (4.5) and using (2.12), (2.15) $)_{2},(4.4),(4.10)$ and (4.12), we obtain

$$
\begin{align*}
& \sum_{j=1}^{r} f_{j}\left\{\eta_{i}(Y) h_{j}^{\ell}(X, P Z)-\eta_{i}(X) h_{j}^{\ell}(Y, P Z)\right\}  \tag{4.13}\\
& =\left\{X\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}(X)-f_{i} \pi(X)\right\} g(Y, P Z) \\
& -\left\{Y\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}(Y)-f_{i} \pi(X)\right\} g(X, P Z) \\
& +\eta_{i}(Y)\left\{X(\pi(P Z))-\pi\left(\nabla_{X}^{*} P Z\right)\right\} \\
& -\eta_{i}(X)\left\{Y(\pi(P Z))-\pi\left(\nabla_{Y}^{*} P Z\right)\right\}
\end{align*}
$$

Applying $\nabla_{X}$ to $\pi(P Z)=g(\zeta, P Z)$ and using (2.11), we have

$$
\begin{aligned}
& X(\pi(P Z))-\pi\left(\nabla_{X}^{*} P Z\right) \\
& =-g(X, P Z)-\pi(X) \pi(P Z)+\sum_{j=1}^{r} f_{j} h_{j}^{\ell}(X, P Z)+g\left(\nabla_{X} \zeta, P Z\right) .
\end{aligned}
$$

Substituting this equation into (4.13), we obtain

$$
\begin{align*}
& \left\{X\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}(X)-f_{i} \pi(X)\right\} g(Y, P Z)  \tag{4.14}\\
& -\left\{Y\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}(Y)-f_{i} \pi(X)\right\} g(X, P Z) \\
& =\eta_{i}(Y)\left\{g(X, P Z)+\pi(X) \pi(P Z)-g\left(\nabla_{X} \zeta, P Z\right)\right\} \\
& -\eta_{i}(X)\left\{g(Y, P Z)+\pi(Y) \pi(P Z)-g\left(\nabla_{Y} \zeta, P Z\right)\right\}
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $g(\zeta, \zeta)=1$ and using (2.1) and (2.5), we have

$$
\begin{equation*}
g\left(\nabla_{X} \zeta, \zeta\right)=\pi(X) \tag{4.15}
\end{equation*}
$$

Taking $X=Z=\zeta$ and $Y=\xi_{i}$ to (4.14) and using (4.15), we get

$$
\begin{equation*}
\xi_{i}\left[f_{i}\right]-\sum_{j=1}^{r} f_{j} \tau_{i j}\left(\xi_{i}\right)+1=0 . \tag{4.16}
\end{equation*}
$$

From (4.11) and (4.16), we have $c=1$.
Corollary 1. There exist no irrotational screen quasi-conformal r-lightlike submanifolds $M$ of a semi-Riemannian space form $\bar{M}(c)$ admitting a semisymmetric non-metric connection such that $\zeta$ belongs to $S(T M)$.

Proof. If $\zeta$ belongs to $S(T M)$, then we get $f_{i}=\bar{g}\left(\zeta, N_{i}\right)=0$ for all $i$. It follows from (4.16) that $1=0$. It is a contradiction. Thus there exist no irrotational screen quasi-conformal $r$-lightlike submanifolds $M$ of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that $\zeta$ belongs to $S(T M)$.

Remark 1. For any lightlike submanifolds $M$ of indefinite almost contact metric manifolds $\bar{M}$ such that the structure vector field $\zeta$ of $\bar{M}$ is tangent to $M$, if $\zeta$ belongs to $\operatorname{Rad}(T M)$, then $\zeta$ is decompose as $\zeta=\sum_{i=1}^{r} a_{i} \xi_{i}$ and $a \neq 0$. It follow that $1=\bar{g}(\zeta, \zeta)=\sum_{i, j=1}^{r} a_{i} a_{j} \bar{g}\left(\xi_{i}, \xi_{j}\right)=0$. It is a contradiction. Thus $\zeta$ does not belong to $\operatorname{Rad}(T M)$. This enables one to choose a screen distribution $S(T M)$ which contains $\zeta$. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(T M)^{\sharp}=T M / \operatorname{Rad}(T M)$ [15]. Thus all screen distributions are mutually isomorphic. This implies that if $\zeta$ is tangent to $M$, then it belongs to $S(T M)$. Călin [2] proved this result. Duggal and Sahin also proved this result in their book (see p.318-319 of [7]). After Cǎlin's work, many earlier works $[5,6,7,14,16]$, which have been written on lightlike submanifolds of indefinite almost contact manifolds or lightlike submanifolds of semi-Riemannian manifolds admitting semi-symmetric non-metric connections, obtained their results by using the Cǎlin's result. However, we regret to indicate that the above Călin's result is not true for any lightlike submanifolds $M$ of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection by Theorem 4.2 and its corollary.
Definition 3. An $r$-lightlike submanifold $M$ is screen conformal [4, 7, 10] if the second fundamental forms $B$ and $C$ satisfy

$$
\begin{equation*}
h_{i}^{*}(X, P Y)=\varphi_{i} h_{i}^{\ell}(X, P Y), \quad \forall i \tag{4.17}
\end{equation*}
$$

where $\varphi_{i}$ s are non-vanishing functions on a coordinate neighborhood $\mathcal{U}$ in $M$.

Theorem 4.3. Let $M$ be an irrotational r-lightlike submanifold of a semiRiemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field $\zeta$ of $\bar{M}$ is tangent to $M$. If $M$ is screen conformal, then we have $c=0$.

Proof. Applying $\nabla_{X}$ to $h_{i}^{*}(Y, P Z)=\varphi_{i} h_{i}^{\ell}(Y, P Z)$, we have

$$
\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)=X\left[\varphi_{i}\right] h_{i}^{\ell}(Y, P Z)+\varphi_{i}\left(\nabla_{X} h_{i}^{\ell}\right)(Y, P Z)
$$

Substituting this equation into (4.5) and using (4.4) and (4.17), we have

$$
\begin{aligned}
& c\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\} \\
& =X\left[\varphi_{i}\right] h_{i}^{\ell}(Y, P Z)-Y\left[\varphi_{i}\right] h_{i}^{\ell}(X, P Z) \\
& \quad+\sum_{j=1}^{r}\left\{\varphi_{i} \tau_{j i}(Y)+\varphi_{j} \tau_{i j}(Y)+\mu_{i j}(Y)+f_{j} \eta_{i}(Y)\right\} g(X, P Z) \\
& \quad-\sum_{j=1}^{r}\left\{\varphi_{i} \tau_{j i}(X)+\varphi_{j} \tau_{i j}(X)+\mu_{i j}(X)+f_{j} \eta_{i}(X)\right\} g(Y, P Z) \\
& \quad+\sum_{\alpha=r+1}^{n} \epsilon_{\alpha}\left\{\rho_{i \alpha}(Y) h_{\alpha}^{s}(X, P Z)-\rho_{i \alpha}(X) h_{\alpha}^{s}(Y, P Z) .\right.
\end{aligned}
$$

Taking $X=\xi_{i}$ and $Y=Z=\zeta$ to this and using (4.3), we have $c=0$.
Remark 2. From Theorem 4.2 and Theorem 4.3, we show that two type screen conformalities of $M$, named by screen conformal and screen quasi-conformal, are not mutually dependent to each other but mutually independent.

## References

[1] Ageshe, N.S. and Chafle, M.R.: A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23(6), 1992, 399-409.
[2] Cǎlin, C.: Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Iasi, Romania, 1998.
[3] Duggal, K.L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[4] Duggal, K.L. and Jin, D.H.: Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[5] Duggal, K.L. and Sahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci., 2007, Art ID 57585, 1-21.
[6] Duggal, K.L. and Sahin, B.: Generalized Cauchy-Riemann lightlike Submanifolds of indefinite Sasakian manifolds, Acta Math. Hungar., 122(1-2), 2009, 45-58.
[7] Duggal, K.L. and Sahin, B.: Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhäuser, 2010.
[8] Jin, D.H.: Ascreen lightlike hypersurfaces of an indefinite Sasakian manifold, J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 20(1), 2013, 25-35.
[9] Jin, D.H.: Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection, submitted in Indian J. Pure Appl. Math.
[10] Jin, D.H.: Einstein lightlike hypersurfaces of a Lorentz space form with a semisymmetric non-metric connection, Bull. Korean Math. Soc. 50(4), 2013, 1367-1376.
[11] Jin, D.H.: Einstein half lightlike submanifolds of a Lorentzian space form with a semisymmetric non-metric connection, J. of Ineq. and Appl., 2013, 2013:403.
[12] Jin, D.H.: Lightlike submanifolds of a semi-Riemannian manifold with a semisymmetric non-metric connection, J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 19(3), 2012, 211-228.
[13] Jin, D.H and Lee, J.W.: A classification of half lightlike submanifolds of a semiRiemannian manifold with a semi-symmetric non-metric connection, Bull. Korean Math. Soc. 50(3), 2013, 705-717.
[14] Kang, T.H., Jung, S.D., Kim, B.H., Pak, H.K. and Pak, J.S.: Lightlike hypersurfaces of indefinite Sasakian manifolds, Indian J. Pure Appl. Math., 34, 2003, 1369-1380.
[15] Kupeli, D.N.: Singular Semi-Riemannian Geometry, Kluwer Academic, 366, 1996.
[16] Massamba, F.: Screen almost conformal lightlike geometry in indefinite Kenmotsu space forms, Int. Electron. J. Geom., 5(2), 2012, 36-58.
[17] Yasar, E., Cöken, A.C. and Yücesan, A.: Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102, 2008, 253-264.

Department of Mathematics
Dongguk University
Gyeonguu 780-714, Republic of Korea
E-mail address: jindh@dongguk.ac.kr


[^0]:    Received February 6, 2014; Accepted May 26, 2014.
    2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
    Key words and phrases. irrotational, screen quasi-conformal, lightlike submanifold, semisymmetric non-metric connection.

