• Title/Summary/Keyword: Riemann surface of genus one

Search Result 4, Processing Time 0.02 seconds

TORQUES AND RIEMANN'S MINIMAL SURFACES

  • Jin, Sun Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.219-224
    • /
    • 2006
  • In this article, we prove that a properly embedded minimal surface in $R^3$ of genus zero must be one of Riemann's minimal examples if outside of a solid cylinder it is the union of planar ends with the same torques at all integer heights.

  • PDF

ON FIXED POINTS ON COMPACT RIEMANN SURFACES

  • Gromadzki, Grzegorz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1015-1021
    • /
    • 2011
  • A point of a Riemann surface X is said to be its fixed point if it is a fixed point of one of its nontrivial holomorphic automorphisms. We start this note by proving that the set Fix(X) of fixed points of Riemann surface X of genus g${\geq}$2 has at most 82(g-1) elements and this bound is attained just for X having a Hurwitz group of automorphisms, i.e., a group of order 84(g-1). The set of such points is invariant under the group of holomorphic automorphisms of X and we study the corresponding symmetric representation. We show that its algebraic type is an essential invariant of the topological type of the holomorphic action and we study its kernel, to find in particular some sufficient condition for its faithfulness.

ON j-INVARIANTS OF WEIERSTRASS EQUATIONS

  • Horiuchi, Ryutaro
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.695-698
    • /
    • 2008
  • A simple proof of the fact that the j-invariants for Weierstrass equations are invariant under birational transformations which keep the forms of Weierstrass equations is given by finding a non-trivial explicit birational transformation which sends a normalized Weierstrass equation to the same equation.

REGULAR MAPS-COMBINATORIAL OBJECTS RELATING DIFFERENT FIELDS OF MATHEMATICS

  • Nedela, Roman
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1069-1105
    • /
    • 2001
  • Regular maps and hypermaps are cellular decompositions of closed surfaces exhibiting the highest possible number of symmetries. The five Platonic solids present the most familar examples of regular maps. The gret dodecahedron, a 5-valent pentagonal regular map on the surface of genus 5 discovered by Kepler, is probably the first known non-spherical regular map. Modern history of regular maps goes back at least to Klein (1878) who described in [59] a regular map of type (3, 7) on the orientable surface of genus 3. In its early times, the study of regular maps was closely connected with group theory as one can see in Burnside’s famous monograph [19], and more recently in Coxeter’s and Moser’s book [25] (Chapter 8). The present-time interest in regular maps extends to their connection to Dyck\`s triangle groups, Riemann surfaces, algebraic curves, Galois groups and other areas, Many of these links are nicely surveyed in the recent papers of Jones [55] and Jones and Singerman [54]. The presented survey paper is based on the talk given by the author at the conference “Mathematics in the New Millenium”held in Seoul, October 2000. The idea was, on one hand side, to show the relationship of (regular) maps and hypermaps to the above mentioned fields of mathematics. On the other hand, we wanted to stress some ideas and results that are important for understanding of the nature of these interesting mathematical objects.

  • PDF