Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.43-43
/
2015
천수방정식을 사용하는 초기 수치모형은 프로드수($F_4$)가 변화하는 흐름 즉, 상류방향과 하류방향으로 전파하는 홍수파를 동시에 해석하기 위해 중앙 차분기법이 필요한 상류(sub-critical flow)와 흐름방향에 따른 상류이송(upwinding)기법이 필요한 사류(super-critical flow)가 나타나는 흐름해석에서 어려움이 있었다. 하지만, 근사 Riemann 해법의 등장으로 흐름방향에 관계없이 특성선을 따라 정확한 상향가중기법의 적용이 가능하게 되어, 천수방정식을 지배방정식으로 하는 수치모형이 더욱 실용적으로 적용될 수 있도록 하였다. 따라서, 현재 근사 Riemann 해법은 Godunov 형 유한체적 기법, 불연속 Galerkin 혹은 Petrov-Galerkin 유한요소기법 그리고 Boussinesq 기법에도 적용되고 있으며, 특히 Godunov 형 유한체적기법과 결합한 근사 Riemann 해법은 댐 붕괴, 하천 범람 그리고 도시 및 해안지역 침수에 이르기까지 여러 가지 문제에 폭넓게 적용되고 있다. 지금까지 홍수 모델링에 적용된 Godunov형 유한체적모형은 정형 사각격자나 비정형 삼각격자 중에서 한가지의 격자 종류만을 적용한 연구가 주로 수행되었으며, 유한요소모형과 같이 이 두 가지 격자를 동시에 적용한 연구는 거의 이루어지지 않고 있다. 일반적으로, 삼각격자는 사각격자와 는 달리 연구유역의 경계나 지형이 복잡한 경우에도 큰 노력없이 격자의 생성이 가능하나, 격자와 노드의 수가 사각격자보다 많아 계산시간이 많이 소요되는 단점이 있다. 반면, 사각격자는 하천과 같이 선형으로 변하는 지형에 대해서는 표현하기가 용이하며 계산시간의 효율성도 뛰어나다. 본 연구에서는 하천, 도시 그리고 해안지역에서의 효율적이고 정확한 홍수 모델링을 위해 삼각 및 사각격자 그리고 이 두 격자를 동시에 고려한 하이브리드 격자의 적용이 가능한 Godunov형 2차원 유한체적 모형을 개발하였다. 그리고 개발모형을 정확해가 있는 댐 붕괴 문제, 실측치가 존재하는 실험하도 및 실제하도에 삼각, 사각 그리고 혼합격자를 생성하여 모의를 수행하고, 각 적용 격자에 따른 정확성과 효율성 및 장점과 단점을 연구하였다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.2
/
pp.479-492
/
2014
In this study, was proposed a numerical scheme imposing exact solutions as the internal boundary conditions for the shallow-water flows over a discontinuous transverse structure such as a step. The HLLL approximate Riemann solver with the MUSCL was used for the test of the proposed scheme. Very good agreement was obtained between simulations and exact solutions for various problems of the shallow-water flows over a step. In addition, results by the numerical model showed good agreement with those of dam-break experiments over a step and stepped chute one. Developed model can simulate the shallow-water flows over discontinuous bottom such as a drop structure without additional rating curve or topography smoothing. Given the proper evaluations for the flow resistance by a step and the energy loss by the nappe flow in the future, could be simulated flooding and drying of the shallow-water flows over discontinuous topography such as a weir or the river road with retaining wall.
KSCE Journal of Civil and Environmental Engineering Research
/
v.32
no.1B
/
pp.21-27
/
2012
The HLLL scheme, proposed by T. Linde, determines all the wave speeds from the initial states because the middle wave is evaluated by the introduction of a generalized entropy function. The scheme is considered a genuine successor to the original HLL scheme because it is completely separated form the Roe's linearization scheme unlike the HLLE scheme and does not rely on the exact solution unlike the HLLC scheme. In this study, a numerical model was configured by the HLLL scheme with the total energy as a generalized entropy function to solve governing equations, which are the one-dimensional shallow water equations without source terms and with an additional conserved variable relating a concentration. Despite the limitations of the first order solutions, results to three cases with the exact solutions were generally accurate. The HLLL scheme appeared to be superior in comparison with the other HLL-type schemes. In particular, the scheme gave fairly accurate results in capturing the front of wetting and drying. However, it revealed shortcomings of more time-consuming calculations compared to the other schemes.
In this study, 2D finite volume model, which can apply to the mixed meshes that is effective to treat the complicated topography such as a natural river, is developed. To do so, an algorithm for finding the neighbouring cell of a computational cell is introduced, and fluxes are computed using the HLLC approximate Riemann solver at each interface between a computational cell and it's neighbouring cells. Moreover, in order to numerically treat the bed slope which has important effect on the balance between flux gradients and sourte terms, different formula to compute the bed slope for rectangular and triangular mesh are applied. The developed model is applied to analyze dam-break in an experimental channel with $90^{\circ}$ bend and Malpasset dam-break in France. The two cases consist of mixed meshes and the suggested method is validated for the experimental channel and natural channel by comparison with the experimental data, field data and computed results.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.2B
/
pp.121-129
/
2009
In this study, dam-break flows are simulated numerically by using an efficient and accurate Cartesian cut-cell mesh system. In the system, most of the computational domain is discretized by the Cartesian mesh, while peculiar grids are done by a cutcell mesh system. The governing equations are then solved by the finite volume method. An HLLC approximate Riemann solver and TVD-WAF method are employed to calculation of advection flux of the shallow-water equations. To validate the numerical model, the model is applied to some problems such as a steady flow convergence on an ideal bed, a steady flow over an irregular bathymetry, and a rectangular tank problem. The present model is finally applied to a simulation of dam-break flow on an experimental channel. The predicted water surface elevations are compared with available laboratory measurements. A very reasonable agreement is observed.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
1999.10a
/
pp.18-18
/
1999
IRR형태의 액체 램제트 추진기관의 공기 흡입구 유동과 내부 연소 유동을 파악하기 위한 수치적 해석을 수행하였다. 해석은 다원 혼합기체에 대한 압축성 Navier-Stoke 방정식과 공기/Kerosene에 대한 화학 반응을 고려하였으며, 결합된 형태의 k-$\omega$/k-$\varepsilon$ 2 방정식 난류모델을 이용하였다. 기본 유동 해법으로는 고차의 시간 및 공간 정확도를 가지는 근사 Riemann 해법과 LU-SGS 방법을 이용하였다.
Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.5
/
pp.1383-1393
/
2014
Recently, with rapid improvement in computer hardware and theoretical development in the field of computational fluid dynamics, high-order accurate schemes also have been applied in the realm of computational hydraulics. In this study, numerical solutions of 1D shallow water equations are presented with TVD Runge-Kutta discontinuous Galerkin (RKDG) finite element method. The transcritical flows such as dam-break flows due to instant dam failure and transcritical flow with bottom elevation change were studied. As a formulation of approximate Riemann solver, the local Lax-Friedrichs (LLF), Roe, HLL flux schemes were employed and MUSCL slope limiter was used to eliminate unnecessary numerical oscillations. The developed model was applied to 1D dam break and transcritical flow. The results were compared to the exact solutions and experimental data.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.158-158
/
2011
천수방정식과 같은 쌍곡선형 미분방정식의 불연속 해에 대한 Riemann 해법은, 1950년대 말 공기동역학 분야에서 S. K. Godunov의 선구적인 시도 이후, 다양한 영역에서 성공적으로 적용되고 있다. 당초 제안된 해법은 공간에 대해 1차 정도였으나, 2차의 정도를 얻을 수 있는 기법이 1970년대 말 B. van Leer에 의해 제안되었으며, MUSCL로 불린다. 서로 인접한 격자의 보존변수가 고려된 경사가 도입되어 두 격자에 의해 공유되는 변의 좌 우에서 선형으로 보존변수가 재구축되는 MUSCL은 제한자와 함께 이용될 때, 구조 격자 체계에서 비교적 단순하면서도 효과적인 적용성이 입증되었다. 그런데, 이 기법을 2차원의 비구조 격자 체계에 적용하는 경우, 인접한 모든 격자의 보존변수를 고려한 평면의 경사를 결정해야 하는 어려움이 따른다. 특히, 삼각형 비구조 격자에 적용할 경우 최적의 평면을 결정하기 위해 Green-Gauss 적분식이나 최소-자승법 등을 이용하게 된다. 이에 비해, 2010년 T. Buffard와 S. Clain이 제안한 다중경사 기법은 격자의 각 변에서 경사가 각각 결정되는 방법으로 계산량이 많은 Green-Gauss 적분식이나 최소자승법을 피할 수 있는 장점이 있는 것으로 알려져 있다. 정확해가 알려진 두 경우에 대해 몇 가지 제한자를 적용한 결과를 1차 정도의 해와 함께 비교하였으며, superbee 제한자에 의한 결과가 우수하였으나, 희유파와 충격파가 맞닿는 곳에서 수치 분산이 나타났다. minmod 제한자의 결과가 대체로 무난하였으며, 이를 2차원 댐 붕괴 문제에 적용하여 1차 정도의 해와 비교하였다. 마찰이 없고 초기 수심이 댐 상류에서 10 m, 하류에서 5 m로서 물이 차 있는 경우, 1차 정도의 해에서 나타나는 수치 소산이 2차 정도에서는 발생되지 않았다. 댐 하류에서 초기에 수심이 영으로 바닥이 드러난 경우에서 마찰의 영향을 검토하였다. 마찰이 있는 경우, 마찰 경사 항의 Manning 계수를 0.04로 두었으며, 마찰에 의한 영향이 잘 드러났다. 수심이 50 mm 보다 작은 경우에는 마찰을 적용하지 않았다. 이 연구는 환경부 '차세대 핵심환경기술개발 사업'의 지원에 의한 것이다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.337-337
/
2015
홍수 저감, 생태계 복원, 위락 등 다양한 목적의 충족을 위해 강변에 저류지, 즉 다목적 유수지(detention basin)를 조성하는 사례가 나타나고 있다. 하천에서 홍수의 발생으로 수위가 어떤 기준보다 높아지면, 흐름의 일부를 돌려 저류지로 보냄으로써 본류의 부담을 덜 수 있다. 이때, 흐름의 분기를 위해 설치되는 하천구조물 중 하나가 측면 위어(side weir) 또는 횡월류 위어(side discharge/overflow weir)이다. 하천의 계획과 설계에서 위어가 적용될 때, 위어에 대한 수위-유량 관계, 즉 그 형식과 제원에 적합한 유량계수(discharge coefficient)의 결정이 관건이 된다. 일반적인 위어와 달리 흐름 양상이 복잡한 측면 위어의 경우, 이론과 실제의 괴리가 아직까지 해소되지 않아 실물 또는 3차원 수치 모형을 이용한 시험으로 수위-유량 관계를 수립할 필요가 있다. 이렇게 결정된 수위-유량 관계는 1차원 또는 수심적분 2차원 모형의 내부 또는 외부 경계로 사용되며, 본류의 수위 증감에 따른 측면 위어의 횡월류량을 통해 저류지의 홍수 조절 능력을 평가할 수 있다. 이 연구에서는, 측면 위어의 수위-유량 관계가 알려지지 않더라도, 저류지에 의한 홍수 조절 효과를 평가할 수 있는 2차원 수치모의에 대해 검토하였다. 수치해법으로서 2차원 천수방정식에 대해 유한체적법을 적용하고, 흐름률(flux)의 정확한 계산을 위해 근사 Riemann 해법을 도입하였다. 먼저, 측면 위어가 없는 실험 조건에 대해 수로 내 한 측선에서 측정된 수위와 유량을 모의 결과와 비교하여 모형을 검증하였다. 이때, 경계조건으로 상류 끝에 측정 유량을, 하류 끝에 측정 수위를 부여하였으며, Manning의 조도계수를 0.014로 설정하였다. 또한, 측면 위어가 설치된 수로에 대해 계산 영역을 340개의 삼각형 격자로 분할하고 측면 위어가 없는 경우와 동일한 조건을 두어 모의하였다. 측면 위어의 하류에 위치한 측선에서 측정치에 대한 평균 제곱근(root mean square) 오차가 수위에 대해 1.9 mm, 유량에 대해 $2.2{\ell}/s$로서 그림과 같이 모의 결과는 실험의 그것과 잘 일치하였다. 이로써, 측면 위어에 대한 수위-유량 관계의 수립을 위한 실물 모형 시험 없이 수심적분 2차원 수치모의를 통해 저류지의 홍수 조절 효과를 평가할 수 있음이 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.