DOI QR코드

DOI QR Code

Development of Two-dimensional Finite Volume Model Applicable to Mixed Meshes

혼합격자의 적용이 가능한 2차원 유한체적모형의 개발

  • Kim, Byung-Hyun (Dept. of Civil & Environmental Engineering, University of California) ;
  • Han, Kun-Yeon (Dept. of Archi & Civil Engineering, Kyungpook National University) ;
  • Son, Ah-Long (Dept. of Archi & Civil Engineering, Kyungpook National University)
  • 김병현 (캘리포니아 주립대학교 얼바인, 토목.환경공학과) ;
  • 한건연 (경북대학교 공과대학 건축.토목공학부) ;
  • 손아롱 (경북대학교 공과대학 건축.토목공학부)
  • Received : 2010.06.03
  • Accepted : 2011.01.21
  • Published : 2011.02.28

Abstract

In this study, 2D finite volume model, which can apply to the mixed meshes that is effective to treat the complicated topography such as a natural river, is developed. To do so, an algorithm for finding the neighbouring cell of a computational cell is introduced, and fluxes are computed using the HLLC approximate Riemann solver at each interface between a computational cell and it's neighbouring cells. Moreover, in order to numerically treat the bed slope which has important effect on the balance between flux gradients and sourte terms, different formula to compute the bed slope for rectangular and triangular mesh are applied. The developed model is applied to analyze dam-break in an experimental channel with $90^{\circ}$ bend and Malpasset dam-break in France. The two cases consist of mixed meshes and the suggested method is validated for the experimental channel and natural channel by comparison with the experimental data, field data and computed results.

본 연구에서는 자연하천과 같은 복잡한 지형의 처리에 효율적인 삼각형 및 사각형 혼합격자의 적용이 가능한 2차원 유한체적모형을 개발하였다. 이를 위해 계산격자의 인접격자를 찾는 알고리즘을 제안하고, 제안 기법을 개발모형에 적용하여 계산격자 및 인접격자의 경계면에서의 흐름률을 HLLC 근사 Riemann 해법을 이용하여 계산하였다. 또한 흐름률과 생성항사이의 균형에 중요한 영향을 주는 혼합격자의 하상경사 처리를 위해 삼각형 및 사각형 격자에 대해 각각 다른 하상경사 계산식을 적용하였다. 개발모형을 혼합격자로 구성된 $90^{\circ}$ 만곡이 존재하는 실험하도에 대한 댐 붕괴 해석 및 자연하천인 Malpasset 댐 붕괴 해석에 적용하고, 계산결과를 실험자료 및 현장조사자료와 비교함으로써 본 연구에서 제안한 기법을 실험하도 및 자연하천에 대해 검증하였다.

Keywords

References

  1. 강민구, 박승우(2003). “ENO 기법을이용한2차원 유한체적 수치모형.” 한국수자원학회논문집, 제36권, 제1호, pp. 1-11.
  2. 김대홍, 조용식(2004). “HLLC Approximate Riemann Solver를 이용한 천수방정식 해석.” 한국수자원학회논문집, 제37권, 제10호, pp. 845-855. https://doi.org/10.3741/JKWRA.2004.37.10.845
  3. 김대홍, 조용식(2005). “불규칙지형에적용가능한 쌍곡선형 천수방정식을 위한 개선표면경사법.” 대한토목학회논문집, 대한토목학회, 제25권, 제3B호, pp. 223-229.
  4. 김병현, 한건연, 김지성(2009a). “Unsplit 기법을적용한흐름률과생성항의처리기법.” 한국수자원학회논문집, 제42권, 제12호, pp. 1079-1089.
  5. 김병현, 한건연, 안기홍(2009b). “Riemann 해법을 이용한 댐 붕괴파의 전파해석.” 대한토목학회논문집, 대한토목학회, 제29권, 제5호, pp. 429-439.
  6. 김우구, 정관수, 김재한(2003). “WAF 기법을 이용한 천수방정식 해석.” 한국수자원학회논문집, 대한수자원학회, 제36권, 제5호, pp. 777-785. https://doi.org/10.3741/JKWRA.2003.36.5.777
  7. Aliparast, M. (2009). “Two-dimensional finite volume method for dam-break flow simulation.” Internal Journal of Sediment Research, Vol. 24, No. 1, pp. 99-107. https://doi.org/10.1016/S1001-6279(09)60019-6
  8. Brufau, P., Garcia-Navarro, P., and Vazquez-Cendon, M.E. (2004). “Zero mass error using unsteady wettingdrying conditions in shallow flows over dry irregular topography.” International Journal for Numerical Methods in Fluids, Vol. 45, No. 10, pp. 1047-1082. https://doi.org/10.1002/fld.729
  9. Fraccarollo, L., and Toro, E.F. (1995). “Experimental and Numerical Assessment of the Shallow Water Model for Two-dimensional Dam-Break Type Problems.” Journal of Hydraulic Research, Vol. 33, No. 6, pp. 843-864. https://doi.org/10.1080/00221689509498555
  10. Guo, W.D., Lai, J.S., and Lin, G.F. (2007). “Hybrid flux-splitting Finite-volume schemes for shallow-water flow simulations with source terms.” Journal of Mechanics, Vol. 23, No. 4, pp. 399-414. https://doi.org/10.1017/S1727719100001453
  11. Guo, W.D., Lai, J.S., and Lin, G.F. (2008). “Finite-volume multi-stage schemes for shallow-water flow simulations.” International Journal for Numerical Methods in Fluids, Vol. 57, No. 2, pp. 177-204. https://doi.org/10.1002/fld.1631
  12. Lai, J.S., Guo, W.D., and Tan, Y.C. (2010). “A well-balanced upstream flux-splitting finite-volume for shallow-water flow simulations with irregular bed topography.” International Journal for Numerical Methods in Fluids, Vol. 62, No. 8, pp. 927-944.
  13. Liang, D., Linand, B., and Falconer, R.A. (2004). “Simulation of rapidly varying flow using an efficient TVDMacCormack scheme.” International Journal of Numerical Methods in Fluids, Vol. 53, No. 5, pp. 811-826.
  14. Liang, D., Lin, B., and Falconer, R.A. (2007). “An boundary-fitted numerical model for flood routing with shock-capturing capability.” Journal of Hydrology, Vol. 332, No. 3-4, pp. 477-486. https://doi.org/10.1016/j.jhydrol.2006.08.002
  15. Loukili, Y., and Soulaimani, A. (2007). “Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation.” International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 8, No. 2, pp. 75-88. https://doi.org/10.1080/15502280601149577
  16. Macchione, F., and Morelli, M.A. (2003). “Practical aspects in comparing shock-capturing schemes for dam break problems.” Journal of Hydraulic Engineering, ASCE, Vol. 129, No. 3, pp. 187-195. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:3(187)
  17. Petaccia, G. (2003). Propagazione di onde a fronte ripido per rottura di sbarramenti in alvei naturali. Ph.D. dissertation, University of Pavia, Italy.
  18. Soares-Frazao, S., and Zech, Y. (1999). “Effects of a sharp bend on dam-break flow.” Proceedings 28th Congress of IAHR, Graz, Austria.
  19. Soares-Frazao, S., and Zech, Y. (2000). “2D and 1D modelling of the Malpasset dam-break test case.” Proceedings 4th Project Workshop of CADAM, Zaragoza, Spain.
  20. Toro, E.F., Spruce, M., and Speares, W. (1994). “Restoration of the contact surface in the HLL Riemann Solver.” Shock Waves, Vol. 4, No. 1, pp. 25-34. https://doi.org/10.1007/BF01414629
  21. Toro, E.F. (2001). Shock-Capturing Methods for Free-Surface ShallowFlows, John Wiley & Sons, Chichester, UK.
  22. Valiani, A., Caleffi, V., and Zanni, A. (2002). “Case study: malpasset dam-break simulation using a two-dimensional finite volume method.” Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 5, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
  23. Yoon, T.H., and Kang, S.K. (2004). “Finite Volume Model for Two-Dimensional Shallow Water Flows on Unstructured Grids.” Journal ofHydraulic Engineering, ASCE, Vol. 130, No. 7, pp. 678-688. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(678)
  24. Zhao, D.H., Shen, H.W., Tabios, G.Q., Lai, J.S., and Tan, W.Y. (1996). “Finite-volume two-dimensional unsteady-flow model for river basins.” Journal of Hydraulic Engineering, ASCE, Vol. 120, No. 7, pp. 863-883.
  25. Zhou, J.G., Causon, D.M., Ingram, D.M., and Mingham, C.G. (2002). “Numerical solutions of the shallow water equations with discontinuous bed topography.” International Journal for Numerical Methods in Fluids, Vol. 38, No. 8, pp. 769-788. https://doi.org/10.1002/fld.243

Cited by

  1. An Application of the Multi-slope MUSCL to the Shallow Water Equations vol.44, pp.10, 2011, https://doi.org/10.3741/JKWRA.2011.44.10.819
  2. Performance Improvement of Computing Time of 2 Dimensional Finite Volume Model using MPI vol.47, pp.7, 2014, https://doi.org/10.3741/JKWRA.2014.47.7.599
  3. Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method vol.44, pp.7, 2011, https://doi.org/10.3741/JKWRA.2011.44.7.511
  4. Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.291