• Title/Summary/Keyword: Ride-comfort

Search Result 377, Processing Time 0.024 seconds

Fuzzy Skyhook Control of A Semi-active Suspension System

  • Cho Jeong-Mok;Jung Tae-Geun;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2006
  • In the recent years, the development of computer-controlled suspension dampers and actuators has improved the trade-off between the vehicle handling and ride comfort, and has led to the development of various damper control policies. The skyhook control is an effective control strategy for suppressing vehicle vibration. In this study, a fuzzy skyhook control is proposed and tuned by a genetic algorithm to improve ride comfort. The proposed fuzzy skyhook control is applied to a quarter-car model in order to compare its performance with continuous skyhook suspensions. To obtain optimized fuzzy skyhook control, scale factors and in-out membership functions are tuned by a genetic algorithm. The simulation results show that the fuzzy skyhook control offers more effective suspension performance over the continuous skyhook control.

A Feasibility Study on Estimation of the Deformation of Rubber Bush in Vehicles Using Acceleration and Displacement Signals on the Links (가속도계 및 변위계를 이용한 차량용 고무부시의 변형량 추정 가능성 연구)

  • Song, Seung-ho;Kim, Kwang-joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.827-835
    • /
    • 2016
  • Ride comfort of a vehicle is often determined by rubber bushes in suspension system. If transmission forces versus deformations across the bushes are available under operational conditions, improvement of the ride comfort could be done with more ease. Recently, the transmission forces are measured using custom-made force transducers inside the links. This study presents a feasibility study on estimation of the rubber bush deformations using vibration signals on the rigid links. Linear variable displacement transducers as well as piezoelectric accelerometers are used to expand frequency range to very low frequency, which cannot be done with accelerometers only. How to estimate the bush deformation from the two vibration signals on the links are presented together with experimental results.

A Study for Vehicle Dynamic Analysis and Test of Airport Railroad (공항철도 차량 동특성 해석 및 시험에 관한 연구)

  • Yang, Hee-Joo;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.188-193
    • /
    • 2007
  • Airport railroad have required maximum design speed 120km/h and wind speed 50m/s condition as design item of airport railroad vehicles. To design and manufacture the vehicle satisfying these conditions, it must carry out the dynamic behaviors analysis such as hunting stability, ride comfort derailment ratio, unloading ratio and lateral force to meet the criterion described in Urban Railroad Act. Dynamic behaviors of vehicle have carried out using the multi-body dynamics simulation program(VAMPIRE). This paper presents the evaluation methods and criterion used to verify dynamic performance of airport railroad vehicle, and show the analysis results of vehicle dynamic simulation and the test results for vibration and ride comfort measured on running performance tests. As a results, each analysis results and test results meet the criterion described in Urban Railroad Act.

  • PDF

Requirement Analysis of Geometry of Articulated Turnout for Urban Maglev (도시형 자기부상열차 굴절식 분기기의 선형 요구조건 분석)

  • Jang, Seung-Yup;Hwang, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1324-1329
    • /
    • 2007
  • For the commercialization of the urban maglev, an articulated turnout which consists of several segments of turnout girders and where switching is done by rotating those segments is under development. In this paper, to determine the alignment of this articulated turnout, the requirements for the alignement are analyzed. Requirements include: those for the levitation control and for the ride comfort. For the levitation control, rail joint width should be limited to a certain value, and for the ride comfort, the lateral acceleration and the time derivative of the lateral acceleration satisfy a guideline. According to these requirements, the alignment criteria are discussed.

  • PDF

Vibration Analysis of Body Mount System on Chassis Frame (섀시 프레임 상의 바디 마운트계의 진동해석)

  • Lee, Chang-Ro;Ryu, Bong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2010
  • This paper describes the static and dynamic characteristics of body mount system which are to be considered in the early design stage. At every location of body mount the static load and dynamic response to road input were calculated using the half car model. Normal mode analysis for the half car model was also performed. In the analysis the design parameters such as the stiffness of mount rubbers and their distribution on mount location were examined for improving ride comfort especially in the lower frequency range.

Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory (비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석)

  • 박찬경;김석원;김회선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

Optimal Design of Shock Absorber using High Speed Stability (고속 안정성을 고려한 쇽업소버 최적 설계)

  • 이광기;모종운;양욱진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

A Study on the Development of Intelligent Cruise Control System (자동차 지능주행 제어시스템에 관한 연구)

  • Chung, Y.B.;Song, Y.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.176-187
    • /
    • 1995
  • The problem of designing intelligent cruise control system for a longitudinal motion of an automobile, which is powered by internal combustion engines coupled to an automatic multispeed transmission, is considered. The basic concept is a vehicle-following system which maintains desired spacing between vehicles. This system actuates throttle with the information of the spacing error so as to maintain proper spacing and improve passenger ride comfort. In designing the controller, a modified controller, i.e, PID gain scheduling and fuzzy controller with fuzzy compensator was developed in order to overcome the nonlinearities of the automobile and obtain better performance. The computer simulation results illustrate that the better vehicle responses were obtained with the modified fuzzy controller and, under this controller, the vehicle responses were found to be relatively insensitive to parameter variations.

  • PDF

Classification of the Korean Road Roughness (국내 도로면 거칠기 특성 분류 기준에 관한 연구)

  • Choi, Gyoo-Jae;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.115-120
    • /
    • 2006
  • A Korean Road Roughness Classification(KRC) method is proposed. Using a dynamic road profiling device equipped with the Accelerometer Established Inertial Profiling Reference(AEIPR) method, road profile measurement is performed on various types of public paved roads in Korea. The road profiling data are processed to classify the characteristics of Korean road roughness. The resultant Korean road roughness classification(KRC) is shown different characteristics compared to the road classification proposed by ISO, MIRA, and Wong. The proposed KRC is composed of 8 classes(A-H, very good-poor) based on the power spectral density and is in good agreements with the characteristics of Korean paved road roughness and can be used well in vehicle ride comfort simulation using domestic road profile.

Study on the Effect of the Payload and Weight Position on the Handling and Ride Comfort of a Truck (트럭의 화물적재량과 적재위치가 조안성 및 승차감에 미치는 영향에 관한 연구)

  • Cha, Hyun-Kyung;Choi, Gyu-Suk;Sohn, Jeong-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • In this paper, the payload condition is considered and computer simulation is carried out to analyze the dynamic behavior of the middle-sized truck under the condition with different weight and location. The computer model for the truck is established and ADAMS/Car is employed to simulate the truck vehicle. A single lane change and bump-pass simulation are performed to evaluate the performance according to the weight and the position of it. Effects of the location and weight of commercial vehicle are analyzed. According to the simulation results, the front deck is preferred as the load location.