• Title/Summary/Keyword: Rice ecosystem

Search Result 127, Processing Time 0.025 seconds

Molecular and Cultivation-Based Characterization of Bacterial Community Structure in Rice Field Soil

  • KIM MI-SOON;AHN JAE-HYUNG;JUNG MEE-KUM;YU JI-HYEON;JOO DONGHUN;KIM MIN-CHEOL;SHIN HYE-CHUL;KIM TAESUNG;RYU TAE-HUN;KWEON SOON-JONG;KIM TAESAN;KIM DONG-HERN;KA JONG-OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1087-1093
    • /
    • 2005
  • The population diversity and seasonal changes of bacterial communities in rice soils were monitored using both culture-dependent approaches and molecular methods. The rice field plot consisted of twelve subplots planted with two genetically-modified (GM) rice and two non-GM rice plants in three replicates. The DGGE analysis revealed that the bacterial community structures of the twelve subplot soils were quite similar to each other in a given month, indicating that there were no significant differences in the structure of the soil microbial populations between GM rice and non-GM rice during the experiment. However, the DGGE profiles of June soil after a sudden flooding were quite different from those of the other months. The June profiles exhibited a few intense DNA bands, compared with the others, indicating that flooding of rice field stimulated selective growth of some indigenous microorganisms. Phylogenetic analysis of l6S rDNA sequences from cultivated isolates showed that, while the isolates obtained from April soil before flooding were relatively evenly distributed among diverse genera such as Arthrobacter, Streptomyces, Terrabacter, and Bacillus/Paenibacillus, those from June soil after flooding mostly belonged to the Arthrobacter species. Phylogenetic analysis of 16S rDNA sequences obtained from the soil by cloning showed that April, August, and October had more diverse microorganisms than June. The results of this study indicated that flooding of rice fields gave a significant impact on the indigenous microbial community structure; however, the initial structure was gradually recovered over time after a sudden flooding.

Comparison of Carbon Budget between Rice-barley Double Cropping and Rice Mono Cropping Field in Gimje, South Korea (국내 벼-보리 이모작지와 벼 단작지의 탄소수지 비교)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Kim, Yong-Seok;Jung, Myung-Pyo;Choi, In-Tae;Kang, Kee-Kyung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.337-347
    • /
    • 2016
  • Carbon dioxide ($CO_2$) and methane ($CH_4$) were measured in a rice-barley double cropping and rice mono cropping paddy fields, which are located in the southwestern coast of Korea, over a one-year period. Net ecosystems $CO_2$ exchange (NEE) and ecosystem respiration (Re) were estimated by the eddy covariance (EC) method, and an automatic open/close chamber (AOCC) method was used to measure $CH_4$ fluxes. Environmental factors (solar radiation, air temperature, precipitation etc.) were also measured along with fluxes. After the quality control and gap-filling, the observed fluxes were analyzed. As a result, NEE was -603.0 and $-471.5g\;C\;m^{-2}\;yr^{-1}$ in rice-barley double cropping and rice mono cropping paddy field, respectively. $CH_4$ emissions increased during the course of flooded days and were similar in two cropping paddy field. Accoding to rough results considering only fluxes of $CO_2$ and $CH_4$, it was estimated that the carbon absorbation in rice-barley double cropping paddy field was higher than that in rice mono cropping paddy field by $128.9g\;C\;m^{-2}\;yr^{-1}$.

Development of drought Tolerant Temperate Rice Variety by Pyramiding QTLs, Pup1 and DTY4.1

  • Jae-Hyuk Han;Na-Hyun Shin;Ian Paul Navea;Jin-Woo Lee;IL-Ryong Choi;Joong Hyoun Chin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.206-206
    • /
    • 2022
  • Sustainable agriculture is a potential strategy to enable agricultural cultivation systems to feed the growing population under climate change. Sustainable agriculture consists of environment-friendly farming methods that allow the production of crops with minimal harm to the ecosystem. Early establishment in rice might be helpful to adopt sustainable agriculture with less inputs, such as water and phosphorus fertilizer. Two QTLs conferring tolerance to abiotic stress and low nutrition condition, DTY4.1 and Pup1, respectively, are effective for good establishment in the early growth stage under low water and phosphorus fertilizer application. We developed 'Sechanmi' and 'MSI 1-DTY' harboring Pup1 and DTY4.1 into MS11, a japonica rice variety adaptable to tropical regions, using Marker-Assisted Backcrossing (MABC). MS 11-PD lines were developed to meet the demand for less water and P fertilizer application throughout the growth stage of rice. In the F5 generation, water-saving or rainfed cultivation was performed in different P (phosphorus) content. Irrigation was applied only when severe drought was observed one month after transplanting. There was no significant difference observed between the parents and MS11-PD lines in low P conditions. However, MS11-PD lines had more tillers in P-supplied conditions compared to that of the parents 40 and 50 days after transplanting. Under the same amount of P, MS11-PD lines might have higher phosphorus uptake capacity than the parents, increasing the number of tillers and showing better early establishment. The better vegetative growth stage is one of the factors that can potentially increase production by way of higher number of panicles. Through this breeding strategy, it is possible to attain sustainable agriculture by applying less P and water to address the need of a growing population.

  • PDF

A Study on the Application of IUCN Global Ecosystem Typology Using Land Cover Map in Korea (토지피복지도를 활용한 IUCN 생태계유형분류 국내 적용)

  • Hee-Jung Sohn;Su-Yeon Won;Jeong-Eun Jeon;Eun-Hee Park;Do-Hee Kim;Sang-Hak Han;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • Over the past few centuries, widespread changes to natural ecosystems caused by human activities have severely threatened biodiversity worldwide. Understanding changes in ecosystems is essential to identifying and managing threats to biodiversity. In line with this need, the IUCN Council formed the IUCN Global Ecosystem Typology (GET) in 2019, taking into account the functions and types of ecosystems. The IUCN provides maps of 10 ecosystem groups and 108 ecological functional groups (EFGs) on a global scale. According to the type classification of IUCN GET ecosystems, Korea's ecosystem is classified into 8 types of Realm (level 1), 18 types of Biome (level 2), and 41 types of Group (level 3). GETs provided by IUCN have low resolution and often do not match the actual land status because it was produced globally. This study aimed to increase the accuracy of Korean IUCN GET type classification by using land cover maps and producing maps that reflected the actual situation. To this end, we ① reviewed the Korean GET data system provided by IUCN GET and ② compared and analyzed it with the current situation in Korea. We evaluated the limitations and usability of the GET through the process and then ③ classified Korea's new Get type reflecting the current situation in Korea by using the national data as much as possible. This study classified Korean GETs into 25 types by using land cover maps and existing national data (Territorial realm: 9, Freshwater: 9, Marine-territorial: 5, Terrestrial-freshwater: 1, and Marine-freshwater-territorial: 1). Compared to the existing map, "F3.2 Constructed lacustrine wetlands", "F3.3 Rice paddies", "F3.4 Freshwater aquafarms", and "T7.3 Plantations" showed the largest area reduction in the modified Korean GET. The area of "T2.2 Temperate Forests" showed the largest area increase, and the "MFT1.3 Coastal saltmarshes and reedbeds" and "F2.2 Small permanent freshwater lakes" types also showed an increase in GET area after modification. Through this process, the existing map, in which the sum of all EFGs in the existing GET accounted for 8.33 times the national area, was modified so that the total sum becomes 1.22 times the national area using the land cover map. This study confirmed that the existing EFG, which had small differences by type and low accuracy, was improved and corrected. This study is significant in that it produced a GET map of Korea that met the GET standard using data reflecting the field conditions. 

Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar (KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향)

  • Kim, HuiSeon;Yun, Seok-In;An, NanHee;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.

Effect of Soil Microbial Diversity in Paddy Wetland under Organic Rice-Fish Mixed Farming System (유기농 복합생태 논습지의 토양 미생물 다양성 증진 효과)

  • Han, Yangsoo;Park, Choongbae;Cho, Jung-Lai;Park, Sang-Gu;Kong, Min-Jae;Nam, Hong-Shik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • In this study, we investigated the bacterial community structure in organic rice-fish mixed farming paddy soil by using high-throughput sequencing technology. The results showed that compared with the organic rice cultivated soil, the content of AP (available phosphorus) increased by 310.23 % and the content of OM (organic matter) increased by 168.83%. The most abundant phyla in paddy soils were Proteobacteria, Bacteriodetes, and Chloroflexi, whose relative abundance was above 47.83%. Among the dominant genera, the relative abundance of Limisphaera in paddy soils was observed. Alpha diversity indicated that the bacterial diversity of paddy soils was similar among each other. The bacterial community structure was affected by the relative abundance of bacteria, not the species of bacteria. Principal Coordinated Analysis (PCoA) results showed that the bacterial communities in organic rice-fish mixed farming soil and organic paddy soil were correlated to each other; the bacterial community structure was distinctively grouped by four different systems (paddy soil under organic rice-fish mixed farming system, organic rice cultivation, and conventional rice cultivation), where the first two are closely related to each other than the third one. The results provide basal support for organic agri-cultivation while improving an ecological value at the same time.

Toxicity of agricultural chemicals on Lymnaea viridis the intermediate host of Fasciola hepatica (간질(肝蛭)의 중간숙주(中間宿主)인 애기물달팽이에 대한 몇가지 농약(農藥)의 독성시험(毒性試驗))

  • Kim, Sang-ki;Lee, Chung-gil;Lee, Chai-yong
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.455-460
    • /
    • 1993
  • In the present study, the effects of 4 agricultural chemicals commonly used in this conuntry were experimentally assessed on Lymnaea viridis the intermediate host of Fasciola hepatica, which in non-target organism of these chemicals. The major habitat of the snail is rice paddies in Korea and many agricultural chemicals are used for weed, fungi or insect control in rice paddies and there is a general concern that certain levels of these chemicals could reach the aquatic ecosystem and possible alter the snail life. Agricultural chemicals used in this study included two herbicides, an insecticide and a fungicide. The tenth generation of laboratory reared snails were selected and exposed to the varying concentrations(0-100 ppm) of these chemicals. As concentrations and time of exposure increase, the per cent mortality increases(p<0.01). $LC_{50}$(lethal concentration for 50% mortality) values of these chemicals on snail after 96-hour exposure were variable; iprobenfos showed the highest acute toxicity(12.6 ppm), while carbofuran showed the lowest acute toxicity(74.5ppm). Sublethal concentrations of chemicals after 96-hour exposure were also variable ; bentazone showed the highest chronic toxicity(0.81ppm), while carbofuran showed the lowest chronic toxicity(5.04 ppm).

  • PDF

Assessment of the Functions of Vegetation and Soil on the Nutrient Cycling in Paddy Field Ecosystem with Inflow of Animal Wastes (빗물에 의해 축산폐수가 유입되는 논 생태계에서 영양물질 순환에 미치는 토양과 식생의 영향평가)

  • Ahn, Yoon-Soo;Kang, Kee-Kyung;Kim, Sae-Geun;Roh, Kee-An;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This study was carried out to assess the roles of soil and vegetation on the nutrient cycling in paddy ecosystem where excessive amounts of animal wastes were flowed in due to the rain. Experimental sites included one abandoned and four cropping paddy fields which were moderately terraced under a small farm village raising 90 milk cows and 35 deer under open-air condition. The watershed covered 4 ha with every 50% of uptown and fodder crops. Concentrations of $NH_4-N$ and $P_2O_5$ in waste water flowed into the abandoned paddy field, enforced by the rain of $56.4mm\;day^{-1}$, were $8.3mg\;{\ell}^{-1}$ and $1.8mg\;{\ell}^{-1}$, respectively. Total mass of rainfall inflow to abandoned field during rice growing period (1 May to 30 Sept.) was $20,900Mg\;ha^{-1}$. Total amounts of $NH_4-N$ and $P_2O_5$ contained in that inflow were estimated as 173 kg and 38 kg, respectively. Concentrations in the outflow water through one abandoned and four rice paddy fields were reduced by 92% for $NH_4-N$ and 95% for $P_2O_5$, as compared to those in the inflows. The reserved portions of nutrients in the abandoned paddy field ecosystem, which were the summation of the uptake by weed and residues in soil, were 29% of the inflow amount for $NH_4-N$ and 30% for $P_2O_5$. These results demonstrated that soil and vegetation in paddy field ecosystem reduced the excessive nutrients from the animal waste inflow to the extents that might be suitable not only for the better growth of rice plant, located at the lower paddy fields, but also for preservation of the downstream from eutrophication.

  • PDF

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

A Simple Method for Classifying Land Cover of Rice Paddy at a 1 km Grid Spacing Using NOAA-AVHRR Data (NOAA-AVHRR 자료를 이용한 1 km 해상도 벼논 피복의 간이분류법)

  • 구자민;홍석영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • Land surface parameterization schemes for atmospheric models as well as decision support tools for ecosystem management require a frequent updating of land cover classification data for regional to global scales. Rice paddies have not been treated independently from other agricultural land classes in many classification systems, despite their atmospheric and ecological significance. A simple but improved method over conventional land cover classification schemes for rice paddy is suggested. Normalized difference vegetation index (NDVI) was calculated for the land area of South Korea at a 1km by 1 km resolution from the visible and the near-infrared channel reflectances of NOAA-AVHRR (Advanced Very High Resolution Radiometer). Monthly composite images of daily maximum NDVI were prepared for May and August, and used to classify 4 major land cover classes : urban, farmland, forests and water body. Among the pixels classified as "forests" in August, those classified as "water body" in May were assigned a "rice paddy" class. The distribution pattern of "rice paddy" pixels was very similar to the reported rice acreage of 1,455 Myons, which is the smallest administrative land unit in Korea. The correlation coefficient between the estimated and the reported acreage of Myons was 0.7, while 0.5 was calculated from the USGS classification.calculated from the USGS classification.

  • PDF