• Title/Summary/Keyword: Riccati Equation

Search Result 163, Processing Time 0.024 seconds

Quasi-LQG/$H_{infty}$/LTR Control for a Nonlinear Servo System with Coulomb Friction and Dead-zone

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.24-34
    • /
    • 2000
  • In this paper we propose a controller design method, called Quasi-LQG/$H_{\infty}$/LTR for nonlinear servo systems with hard nonlinearities such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb friction and dead-zone, the statistically linearized system is built. Then, we consider $H_{\infty}$ performance constraint for the optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modified Riccati equation of which solution leads to an upper bound of the LQG performance. As a result, the nonlinear correction term is included in coupled Riccati equation, which is generally very difficult to thave a numerical solution. To solve this problem, we use the modified loop shaping technique and show some analytic proofs on LTR condition. Finally, the Quasi-LQG/$H_{\infty}$/LTR controller for a nonlinear system is synthesized by inverse random input describing function techniques (ITIDF). It is shown that the proposed design method has a better performance robustness to the hard nonlinearity than LQG/$H_{\infty}$/LTR method via simulations and experiments for the timing-belt driving servo system that contains the Coulomb friction and dead-zone.

  • PDF

A study on the stabilizing control of uncertain system with optimal control (최적제어이론을 이용한 불확실한 시스템의 제어 기법 연구)

  • 한형석;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.55-59
    • /
    • 1991
  • This paper presents a method for designing a full state feedback linear static control law. This will stabilize a given linear uncertain system and also guarantee the performance of the system. The uncertain systems are described by state equation which contains uncertain parameters in system and input distribution matrices. The method is based on the guaranteed cost control of Chang and Peng(1972). The controller gain can be obtained by the solution of a algebraic Riccati equation in which the input weighting matrices depend on the uncertainty bounds. The algebraic Riecati equation in this paper is same as that of weighted LQ regulator problem.

  • PDF

INTERVAL OSCILLATION CRITERIA FOR A SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

  • Zhang, Cun-Hua
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1165-1176
    • /
    • 2009
  • This paper is concerned with the interval oscillation of the second order nonlinear ordinary differential equation (r(t)|y'(t)|$^{{\alpha}-1}$ y'(t))'+p(t)|y'(t)|$^{{\alpha}-1}$ y'(t)+q(t)f(y(t))g(y'(t))=0. By constructing ageneralized Riccati transformation and using the method of averaging techniques, we establish some interval oscillation criteria when f(y) is not differetiable but satisfies the condition $\frac{f(y)}{|y|^{{\alpha}-1}y}$ ${\geq}{\mu}_0$ > 0 for $y{\neq}0$.

  • PDF

Microwave Filter Design using Tapered Transmission Line Theory (테이퍼 전송선 이론을 이용한 마이크로파 여파기 설계)

  • Gwon, Jin-Uk;Choe, Hyeong-Seok;Jang, Ho-Seong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.28-34
    • /
    • 2000
  • In this paper, we derive a spectral function and a new impedance profile of non-uniform tapered transmission lines by applying the Fourier transform to a linearized Riccati equation. We compensate the error which is from a linearized Riccati equation by adding a Taylor series to the impedance profile. Added terms remove discontinuities In the impedance profile at both ends of the non-uniform section. We show that a calculated spectrum approaches to a target spectrum of filter by an iterative method and numerical examples are given to illustrate the role of the phase function. As the design method which is shown in present paper provides a excellent adaptability for the design of non-uniform tapered transmission lines, the present method can be applied to design filters and impedance matching circuits with various passband characteristics.

  • PDF

APPROXIMATION SCHEME FOR A CONTROL SYSTEM

  • KANG, SUNG-KWON
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.103-109
    • /
    • 1994
  • Piezoceramic patches as collocated actuator and sensors are widely used in mechanical control systems. An approximation scheme for computing feedback gains arising in heat flux stabilization problem with such control mechanism is introduced. The scheme is based on a finite element method and a variational approach.

  • PDF

The delay margin of the LQG regulator

  • Kim, Sang-Woo;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.749-752
    • /
    • 1988
  • In this paper, the delay margins of the LQ and the LQG regulators are obtained in the time domain. These margins are represented in terms of the singular values of system matrices and the solutions of a Riccati equation and a Lyapunov one. And their asymptotical properties when gains tend to infinity are investigated.

  • PDF

Hierarchical optimisation for large scale discrete-time systems using extended interaction prediction method (확장된 상호작용 예측방법을 이용한 대규모 이산시간 시스템의 계층적 최적제어)

  • 정희태;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.223-227
    • /
    • 1987
  • This paper presents the extended interaction prediction method for large scale discrete-time systems with interconnected state and control. Feedback gain is obtained from decentralized calculation without solving Riccati equation. Hence, Computer storage and calculation time is reduced.

  • PDF

On the Linear Quadratic Regulator for Descriptor Systems

  • Katayama, Tohru;Minamino, Katsuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.219-224
    • /
    • 1992
  • This paper deals with the linear quadratic optimal regulator problem for descriptor systems without performing a preliminary transformation for a descriptor system. We derive a generalized Riccati differential equation (GRDE) based on the two-point boundary value problem for a Hamiltonian equation. We then obtain an optimal feedback control and the optimal cost in terms of the solution of GRE. A simple example is included.

  • PDF