• Title/Summary/Keyword: Ribosomal RNA

Search Result 463, Processing Time 0.026 seconds

Cloning and Characerization of the Ribosomal RNA Gene from Gonyaulax polyedra

  • Lee, Hee-Gyun;Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.515-523
    • /
    • 2001
  • The dinoflagellates have some primitive nuclear features and are evolutionarily intermediate between prokaryotes and eukaryotes. The small subunit ribosomal RAN gene, the 5.8S ribosomal RNA gene, and the internal transcribed spacer (ITS) of Gonyaulax polyedra were cloned, and their sequences were analyzed to better understand their evolutionary position. The small subunit ribosomal RNA gene was 1,794 nt long, the large subunit ribosomal RNA gene was approximately 3,500 nt long, and the 5.8S ribosomal RNA gene was 159 nt long. The first internal transcribed spacer (ITS1) was 191 nt long, and the second internal transcribed spacer (ITS2) was 185 nt long. The intergenic spacer of the ribosomal RNA gene (IGS) was about 2,200 nt long, indicating that 5,800 nt of transcribed sequences were separated by roughly 2,200 nt of intergenic spacer. The ribosomal RNA genes were repeated many times and arranged in a head-to-tail, tandemly repeated manner. The repeating unit of ribosomal RNA gene of G. polyedra was proposed to be 8,000 nt long. Based on the lengths of ribosomal RNA, sequence alignments with representative organisms, and phylogenetic analysis on ribosomal RNA, G. polyedra appears to be one of the alveolates branched from the eukaryotic crown and, among dinoflagellates, it seems to not have emerged early.

  • PDF

Studies on the riboxomal RNA genes of rhizobium meliloti and bradyrhizobium japonicum (Rhizobium meliloti와 bradyrhizobium japonicum의 ribosomal RNA 유전자에 관한 연구)

  • 강홍규;김달웅;하지홍
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.312-317
    • /
    • 1988
  • The genes for ribosomal RNA in Rhizobium meliloti and Bradyrhizobium japonicum were analyzed by southern hybridization of BamHI, EcoRI, HindIII digested chromosomal DNA with purified 5' $^{32}P$-labeled 16S and 23S rRNA. The big differences in the hybridization pattern of both rhizobia were found. The comparative results were discussed in relation to the copy number and conservativity of restriction sites in the rRNA genes of both rhizobia.

  • PDF

SUMO pathway is required for ribosome biogenesis

  • Hong-Yeoul, Ryu
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.535-540
    • /
    • 2022
  • Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis.

Ribonucleic Acid and Ribonuclease Activity in the Developing Shoot of Rice Plants at Low Temperature (벼의 유아기(刻芽期)에 냉해(冷害)가 RNA 및 RNase 활성도(活性度)에 미치는 영향(影響))

  • Kim, In-Soo;Lee, Chun-Yung
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 1972
  • The qualitative and quantitative changes in RNA in terms of RNase activity of rice plants subjected to the chilling temperature were studied. The total RNA level increased at the early stage and thereafter decreased continuously while the progress of the chilling injury. The change of total RNA was mainly dependent upon the change of ribosomal RNA with soluble RNA less changed. Parallelism between total RNA level and RNase activity was observed at the early stage of chilling injury, while the inverse relationship of RNA RNase was seen in the later stage. Our observations indicate that synthetic function of RNase may be more closely related to ribosomal RNA than soluble RNA.

  • PDF

RFLP(Restriction Fragment Length Polymorphism) by Ribosomal RNA and M13 Probes of Clostridum thermocellum Strains (Ribosomal RNA와 M13 probe에 의한 clostridium thermocellum 균주들의 RFLP(Restriction Fragment Length Polymorphism)비교)

  • 이호섭;홍수형;하지홍
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.189-194
    • /
    • 1991
  • The degree of the genetic variations among Clostridium thermocellum ATCC 27405 and the wild type strains was investigated by the mehtod of GC ratio, DNA-DNA hybridization and RFLP (Restriction Fragment Length Polymorphism) patterns by ribosomal RNA and M13 probe. GC ratio and KNA homology values of th three isolates were approximately equal to those of ATCC type strain. The RFLP patterns by the rRNA and M13 probe showed some differences among C. thermocellum ATCC 27405, wild type strains and Clostridium thermohydrosulfuricum ATCC 33223, indicating that the two probes can be useful in subspecies- and apecies-identification.

  • PDF

Identical small subunit ribosomal RNA gene nucleotide sequence of bovine Theileria isolates (Korea and Japan) and Theileria buffeli (Marula, Kenya) (한국파 일본의 소에서 분리한 Theileria 분리주와 Theiferia buffeli (Marula, Kenya)의 small subunit ribosomal RNA 유전자 염기서열의 일치)

  • 채준석;권오덕
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 1998
  • Small subunit ribosomal RNA (SSU rRNA) gene nucleotide sequences of bovine ReiLerin isolates from Korea (KLS and KCB) and japan (JHS) were determined. The genes from each isolate were amplified by the polymerase chain reaction and the approxi- mately 1.8 kb product cloned and sequenced by a modified dideoxynucleotide method. Overlapping gene segments produced with a series of primers were sequenced, resoRting in a complete DNA sequence for both forward and reverse strands of the SSU rRNA genes of each isolate. SSU rRNA gene sequences (termed Type A) were identical among the bovine ReiLeri,n isolates from Korea and the isolate from Japan. A GenBank data library homolo- gy search showed the sequence to be the same as that listed as leiLeyia buKeLi isolated from cattle in Marula, Kenya.

  • PDF

Non-ribosomal Ribosome Assembly Factors in Escherichia coli (Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들)

  • Choi, Eunsil;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.915-926
    • /
    • 2014
  • The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to form ribonucleoprotein complexes which are folded into mature ribosomal subunits. In this process, a number of non-ribosomal trans-acting factors organize the assembly process of the components. Those factors include GTP- and ATP-binding proteins, rRNA and r-protein modification enzymes, chaperones, and RNA helicases. During ribosome biogenesis, they participate in the modifications of ribosomal proteins and RNAs, and the assemblies of ribosomal proteins with rRNAs. Ribosomes can be assembled from a discrete set of components in vitro, and it is notable that in vivo ribosome assembly is much faster than in vitro ribosome assembly. This suggests that non-ribosomal ribosome assembly factors help to overcome several kinetic traps in ribosome biogenesis process. In spite of accumulation of genetic, structural, and biochemical data, not only the entire procedure of bacterial ribosome synthesis but also most of roles of ribosome assembly factors remain elusive. Here, we review ribosome assembly factors involved in the ribosome maturation of Escherichia coli, and summarize the contributions of several ribosome assembly factors which associate with 50S and 30S ribosomal subunits, respectively.

Construction of Recombinant DNA for Purification of the Gag-Pro Transframe Protein of Human T-cell Leukemia Virus Type I (HTLV-I) (Human T-cell Leukemia Virus Type I (HTLV-I) 의 Gag-Pro Transframe 단백질 정제를 위한 재조합 DNA 의 제작)

  • 남석현
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.466-471
    • /
    • 1992
  • To determine the site at which -1 ribosomal frameshifting occurs within the gag-pro overlap of HTL V-I. DNA fragment corresponding to a portion of the gene overlap was cloned into a SP6 vector. The resultant plasmid harbors the hybrid gene consisting of a synthetic gene encoding 5 amino acids derived from chick prelysozyme including the initiator methionine plus 141 nucleotides of gag-pro overlapping region followed by Staphylococcus aurcus protein A gene fragment. In vitro transcription by SP6 RNA polymerase with this DNA template made an abundant amount of single species mRNA. Cell-free translation programmed with the RNA transcribed in vitro yielded a polypeptide of 21 kDal in size. which could be purified into homogeneity by IgG-Sepharose affinity chromatography. In vitro system described in this study must be useful for rapid purification and sequencing of the Gag-Pro transframe protein. allowing to determine the exact frameshift site on mRNA and to identify the tRNA involved in frameshifting event for the expression of pro gene.

  • PDF

Cloning of 17S-Ribosomal RNA Gene from the Hygromycin Resistant Tetrahymena thermophila (Hygromycin내성 Tetrahymena thermophila의 17S-Ribosomal RNA유전자의 Cloning)

  • 홍용기
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 1986
  • 17S-ribosomal RNA gene from the hygromycin resistant protozoan Tetrahymena thermophila hmr 3 was cloned on E. coli vector pBR 322 as part of study to work the 17S-rRNA structure and the mechanism of hygromycin resistance. The 17S-rDNA was inserted into the Hind 111 site of pBR 322. The clones having recombinant plasmid were selected by the method of colony hybridization with a 17S-rDNA probe of wild type B1868. The orientation of 17S-rDNA insert was located near the tetracycline resistant gene of pBR 322 in a clone 5-19 with the recombinant plasmid.

  • PDF

Cloning and Organization of the Ribosomal RNA Genes of the Mushroom Trichloma matsutake

  • Hwang, Seon-Kap;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.194-199
    • /
    • 1995
  • A portion (7.4 kb) of ribosomal DNA tandem repeat unit from a genome of the mushroom T. matsutake has been cloned. A 1.75 kb EcoRI fragment was cloned first using S. cerevisiae 255 rRNA gene as a probe, and this was then used for further cloning. A chromosomal walking experiment was carried out and the upstream region of the 1.75 kb fragment was cloned using SmaI/BamHI enzyme, the size was estimated to be 5.2 kb in length. Part of the downstream region of the 1.75 kb fragment was also cloned using XbaI/BamHI enzymes. Restriction enzyme maps of three cloned DNA fragments were constructed. Northern hybridization, using total RNA of T. matsutake, and the restriction fragments of three cloned DNAs as probes, revealed that all four ribosomal RNA genes (large subunit[LSU], small subunit [SSU], 5.85 and 5S rRNA genes) are present in the cloned region. The gene organization of the rDNA are regarded as an intergenic spacer [IGS]2 (partial) - SSU rRNA - internal transcribed spacer [ITS]1 - 5.8S rRNA - ITS2 - LSU rRNA - IGS1 -5S rRNA - IG52 (partial).

  • PDF