• 제목/요약/키워드: Ribose-binding proteins

검색결과 15건 처리시간 0.018초

리보스 결합단백질의 대량생산을 위한 야생형 수송결합변이, 복귀변이 유전자의 클로닝과 이들 단백질의 순수정제 (Overproduction and Purification of Ribose-Binding Proteins from the Wild-Type Mutant and Revertant Strains in Escherichia coli)

  • 박순희
    • 미생물학회지
    • /
    • 제26권4호
    • /
    • pp.291-297
    • /
    • 1988
  • 신호배열 돌연변이인 rbsB 103는 전구체 리보스 결합단백질을 세포질내에 축적시키고, rbsB 106 복귀유전자는 이 전구체를 숙성 가능하게 하여 페리플라슴으로 수송되게 한다.(Iida el at., 1985, Park, el at., 1988). 본고에서는 rbsB 유전자의 세 allele, rbsB, rbsB 103와 rbsB 106를 이들이 코딩하는 단백질을 대량생산 하그l자 람다 P 프로모터 조절하에 클론하고 나아가서 다섯종의 단백질을 순수정제하였다.. 전구체 단백질의 pI는 8.0, 숙성단백질의 $P_{L}$는 7.5임을 밝혔다. 순수정제된 단백질의 아마노 말단의 아미노산 배열을 결정하여 DNA 염기서열로부터 밝혀진 아미노산 변화를 확인하였다.

  • PDF

리보스 결합 단백질을 페리플라슴으로 수송하는 복귀변이주의 분석 (Characterization of a Revertant that Restroes the Export of Ribose-Bnding Potein to the Priplasm in Echerichia coli)

  • 박순희;박찬규
    • 미생물학회지
    • /
    • 제26권4호
    • /
    • pp.283-290
    • /
    • 1988
  • 리보스에 대한 화학주성이 결핍되고 리보스 결합 단백칠의 수송 결핍으로 전구체 만백칠이 셔1포젤내에 축적된 rbsB 103 선호 배열 돌연변이에 대해서는 이미 보고한 바 있다(Iida et ai., 1985). 본고에서는 이 변이주로부터 리보스 화학주생이 정상인 복 귀변이주를 분리하여 분석한 결과를 보고하는 바, 이 복귀변이주에서 분리한 mini cell에서 숙성 단백질이 합성되고 이 복귀변이가 리보스 결합 단백질의 구조유전자의 아미노말단을 코딩하는 부위에 일어났음을 보였다 DNA 염기서열 분석에 의해 원래 rbsB 103 선호애열 변이 이외에 또 하냐의 변이가 일어나서 원래 돌연변이형을 상쇄한 pseudorevertant임을 확인하였다. 나아가 삼투압 충격분석으로 복귀변이주에서 합성된 숙성 리보스 결합 단백질이 페라플러슴으로 수송되었음을 보였다. 야생형에서 합성된 전구체, 숙성 리보스 결합 단백질과 복귀변이주에서 합성된 29, 32 kd 단백질의 펩티드 패턴을 H. P. L. C . 로 조사하여 그 관련성을 확인하였으며, 전구체에 고유한 두 펩티드가 돌연변이주의 경우와 비교하여 복귀변이주에서 소수성이 더 큰 것을 확인하였다. 야생형과 복귀변이주에서 합성된 전구체 단백질의 생체내 신호배열 절단속도플 비교한 결과 복귀변이주에서 그 속도가 더 느림을 알 수 있었다. 그러나 야생형과 복귀변이주에서 숙성단백질을 순수 분리정제하여 아미노산말단 아미노산 배열을 분석한 결과 복귀변이주의 신호배열내에 야생형과 다른 두 아미노산의 존재에도 불구하고 절단부위에는 변화가 오지 않음을 보였다.

  • PDF

대장균 리보스 결합단백질의 신호배열 변이에 대한 숙성체 부위의 회복돌연변이 (Intragenic Suppressors for Expory-defective Signal Sequence Mutation of Ribose-binding Protein in Escherichia coli)

  • 이영희;송택선;김정호;박순희;박찬규
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.270-277
    • /
    • 1991
  • A mutational alteration in the signal sequence of ribose-binding protein (RBP) of Escherichia coli, rbsB103, completely blocks the export of the protein to the periplasm. Intragenic suppressors for this mutation have been selected on minimal medium with ribose as a sole carbon source. Six suppressor mutations were characterized in detail and were found to have single amino acid wubstitution in the mature portion of RBP, which resulted in the mobility shift of the proteins on SDS polyacrylamide gel. Amino acid changes of these suppressors were localized in several peptides which are packed to form the N terminal domain of typical bilobate conformation of RBP. The involvement of SecB, a molecular chaperone, was investigated in the suppression of signal sequence mutation. Translocation efficency was found to be increased by the presence of SecB for all suppressors. It is likely that the folding characteristics of RBP altered by the suppressor mutations affect the affinity of interaction between SecB and RBP.

  • PDF

ADP-Ribosylation: Activation, Recognition, and Removal

  • Li, Nan;Chen, Junjie
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.9-16
    • /
    • 2014
  • ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.

Mutant and Its Functional Revertant Signal Peptides of Escherichia coli Ribose Binding Protein Show the Differences in the Interaction with Lipid Bilayer

  • Oh, Doo-Byoung;Taeho Ahn;Kim, Hyoung-Man
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.43-43
    • /
    • 1999
  • Signal peptides of secretary proteins interact with various membranes and non-membrane components during the translocation. We investigated the interaction of signal peptides of ribose binding protein (RBP) with Escherichia coli (E.coli) signal recognition particle (SRP), SecA and lipid bilayer. Previous studies showed that the functional signal peptides inhibit the GTPase activity of E.coli SRP which consisted of F로 and 4.5S RNA.(omitted)

  • PDF

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

Effects of Signal Peptide and Adenylate on the Oligomerization and Membrane Binding of Soluble SecA

  • Shin, Ji-Yeun;Kim, Mi-Hee;Ahn, Tae-Ho
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.319-328
    • /
    • 2006
  • SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

$p56^{lck}$ SH2 domain 결합 단백질 p62가 Jurkat T-세포주의 세포예정사에 미치는 영향 (Potential Involvement of p62, a Phosphotyrosine-independent Ligand of SH2 Domain of $p56^{lck}$, on UV-induced Apoptosis in Jurkat T-cell Line)

  • 정인실
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 1998
  • p62는 임파구에 특이적으로 발현하는 단백질 티로신 키나제인 p56$^{lck}$의 SH2 doamin과 결합하는 세포질 단백질로서 두 단백질의 결합에는 지금까지 알려진 바와 다르게 인산화된 티로신이 필요없다. p62는 기능이 다른 여러 조직에서 공통적으로 발현되며 유비퀴틴, 단백질 키나제 C 이성질체 둥 다양한 단백질과 결합하는 것이 알려져 있다. 이와 같은 현상으로 p62가 다양한 생물학적 기능을 수행할 수 있음을 예측할 수 있으나 그 자세한 기작은 잘 알려져 있지 않다. 본 연구에서는 p62가 T-세포에 특이적으로 발현하는 14-3-3 $ au$ 이성질체와 결합하는 것을 확인하였으며, p62를 인위적으로 T-세포에 다량으로 발현시키면 세포예정사 (apoptosis)의 시작이 지연되는 현상을 조사하였다. 이때 세포사멸과정에서 전형적으로 나타나는 DNA 절단현상 (DNA fragmentaion)과 poly (ADP-ribose) polymerase의 분해가 지연됨을 알 수 있었다. 최근 14-3-3 단백질이 임파구에서 세포예정사를 촉진시키는 기능을 가진 Bad와 결합함으로써 세포의 생존 신호 전달에 중요한 역할을 한다는 것이 보고된 바 있다. 따라서 본 연구의 결과는 T-세포의 활성으로 일어나는 사멸예정사 과정 중에 p62와 14-3-3 단백질에 의해 수행되는 조절 기작이 있음을 시사하고 있다.다.

  • PDF

Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway

  • Ryu, Yea Seong;Hyun, Jin Won;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • 제26권3호
    • /
    • pp.191-199
    • /
    • 2020
  • Fucoidan, a natural component of brown seaweed, has various biological activities such as anti-cancer activity, anti-oxidant, and anti-inflammatory against various cancer cells. However, the fucoidan has been implicated in melanoma cells via apoptosis signaling pathway. Therefore, we investigated apoptosis with fucoidan in A2058 human melanoma cells with dose- and time-dependent manners. In our results, A2058 cells viability decreased at relatively short-time and low-concentration through fucoidan. This effects of fucoidan on A2058 cells appeared to be mediated by the induction of apoptosis, as manifested by morphological changes through DNA-binding dye Hoechst 33342 staining. When a dose of 80 ㎍/mL fucoidan was treated, the cells were observed: crescent or ring-like structure, chromatin condensation, and nuclear fragmentation. With the increase at 100 ㎍/mL fucoidan, the cell membrane is intact throughout the total process, including membrane blebbing and loss of membrane integrity as well as increase of sub-G1 DNA. Furthermore, to understand the exact mechanism of fucoidan-treated in A2058 cells, western blotting was performed to detect apoptosis-related protein expression. In this study, Bcl-2 family proteins can be regulated by fucoidan, suggesting that fucoidan-induced apoptosis is modulated by intrinsic pathway. Therefore, expression of Bcl-2 and Bax may result in altered permeability, activating caspase-3 and caspase-9. And the cleaved form of poly ADP-ribose polymerase was detected in fucoidan-treated A2058 cells. These results suggest that A2058 cells are highly sensitive to growth inhibition by fucoidan via apoptosis, as evidenced by activation of extracellular signal-regulated kinases/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.