DOI QR코드

DOI QR Code

ADP-Ribosylation: Activation, Recognition, and Removal

  • Li, Nan (Department of Experimental Radiation Oncology, Unit 66, The University of Texas MD Anderson Cancer Center) ;
  • Chen, Junjie (Department of Experimental Radiation Oncology, Unit 66, The University of Texas MD Anderson Cancer Center)
  • Received : 2013.08.30
  • Accepted : 2013.09.02
  • Published : 2014.01.31

Abstract

ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.

Keywords

References

  1. Aguiar, R.C., Takeyama, K., He, C., Kreinbrink, K., and Shipp, M.A. (2005). B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J. Biol. Chem. 280, 33756-33765. https://doi.org/10.1074/jbc.M505408200
  2. Ahel, I., Ahel, D., Matsusaka, T., Clark, A.J., Pines, J., Boulton, S.J., and West, S.C. (2008). Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451, 81-85. https://doi.org/10.1038/nature06420
  3. Ame, J.C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., Decker, P., Muller, S., Hoger, T., Menissier-de Murcia, J., and de Murcia, G. (1999). PARP-2, A novel mammalian DNA damagedependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860-17868. https://doi.org/10.1074/jbc.274.25.17860
  4. Andrabi, S.A., Kang, H.C., Haince, J.F., Lee, Y.I., Zhang, J., Chi, Z., West, A.B., Koehler, R.C., Poirier, G.G., Dawson, T.M., et al. (2011). Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat. Med. 17, 692-699. https://doi.org/10.1038/nm.2387
  5. Aravind, L. (2001). The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273-275. https://doi.org/10.1016/S0968-0004(01)01787-X
  6. Atasheva, S., Akhrymuk, M., Frolova, E.I., and Frolov, I. (2012). New PARP gene with an anti-alphavirus function. J. Virol. 86, 8147-8160. https://doi.org/10.1128/JVI.00733-12
  7. Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917. https://doi.org/10.1038/nature03443
  8. Chang, W., Dynek, J.N., and Smith, S. (2005). NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem. J. 391, 177-184. https://doi.org/10.1042/BJ20050885
  9. Changolkar, L.N., Costanzi, C., Leu, N.A., Chen, D., McLaughlin, K.J., and Pehrson, J.R. (2007). Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell. Biol. 27, 2758-2764. https://doi.org/10.1128/MCB.02334-06
  10. Chen, D., Vollmar, M., Rossi, M.N., Phillips, C., Kraehenbuehl, R., Slade, D., Mehrotra, P.V., von Delft, F., Crosthwaite, S.K., Gileadi, O., et al. (2011). Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. J. Biol. Chem. 286, 13261-13271. https://doi.org/10.1074/jbc.M110.206771
  11. Costanzi, C., and Pehrson, J.R. (2001). MACROH2A2, a new member of the MARCOH2A core histone family. J. Biol. Chem. 276, 21776-21784. https://doi.org/10.1074/jbc.M010919200
  12. de Murcia, J.M.N., Ricoul, M., Tartier, L., Niedergang, C., Huber, A., Dantzer, F., Schreiber, V., Ame, J.C., Dierich, A., LeMeur, M., et al. (2003). Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255-2263. https://doi.org/10.1093/emboj/cdg206
  13. Di Paola, S., Micaroni, M., Di Tullio, G., Buccione, R., and Di Girolamo, M. (2012). PARP16/ARTD15 is a novel endoplasmicreticulum- associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-beta 1. PLoS One 7, e37352. https://doi.org/10.1371/journal.pone.0037352
  14. Fahrer, J., Kranaster, R., Altmeyer, M., Marx, A., and Burkle, A. (2007). Quantitative analysis of the binding affinity of poly(ADPribose) to specific binding proteins as a function of chain length. Nucleic Acids Res. 35, e143. https://doi.org/10.1093/nar/gkm944
  15. Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921. https://doi.org/10.1038/nature03445
  16. Gagne, J.P., Isabelle, M., Lo, K.S., Bourassa, S., Hendzel, M.J., Dawson, V.L., Dawson, T.M., and Poirier, G.G. (2008). Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959-6976. https://doi.org/10.1093/nar/gkn771
  17. Gao, G., Guo, X., and Goff, S.P. (2002). Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703-1706. https://doi.org/10.1126/science.1074276
  18. Gibson, B.A., and Kraus, W.L. (2012). New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411-424. https://doi.org/10.1038/nrm3376
  19. Glover, J.N., Williams, R.S., and Lee, M.S. (2004). Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem. Sci. 29, 579-585. https://doi.org/10.1016/j.tibs.2004.09.010
  20. Gonzalez, M., Nampoothiri, S., Kornblum, C., Oteyza, A.C., Walter, J., Konidari, I., Hulme, W., Speziani, F., Schols, L., Zuchner, S., et al. (2013). Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur. J. Hum. Genet. [Epub ahead of print]
  21. Gottschalk, A.J., Timinszky, G., Kong, S.E., Jin, J., Cai, Y., Swanson, S.K., Washburn, M.P., Florens, L., Ladurner, A.G., Conaway, J.W., et al. (2009). Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl. Acad. Sci. USA 106, 13770-13774. https://doi.org/10.1073/pnas.0906920106
  22. Gudjonsson, T., Altmeyer, M., Savic, V., Toledo, L., Dinant, C., Grofte, M., Bartkova, J., Poulsen, M., Oka, Y., Bekker-Jensen, S., et al. (2012). TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697-709. https://doi.org/10.1016/j.cell.2012.06.039
  23. Han, W., Li, X., and Fu, X. (2011). The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727, 86-103. https://doi.org/10.1016/j.mrrev.2011.03.001
  24. Hassa, P.O., and Hottiger, M.O. (2008). The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADPribose polymerases. Front Biosci. 13, 3046-3082. https://doi.org/10.2741/2909
  25. Hsiao, S.J., and Smith, S. (2008). Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83-92. https://doi.org/10.1016/j.biochi.2007.07.012
  26. Huang, S.M., Mishina, Y.M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G.A., Charlat, O., Wiellette, E., Zhang, Y., Wiessner, S., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614-620. https://doi.org/10.1038/nature08356
  27. Ikejima, M., and Gill, D.M. (1988). Poly(ADP-ribose) degradation by glycohydrolase starts with an endonucleolytic incision. J. Biol. Chem. 263, 11037-11040.
  28. Iles, N., Rulten, S., El-Khamisy, S.F., and Caldecott, K.W. (2007). APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol. Cell. Biol. 27, 3793-3803. https://doi.org/10.1128/MCB.02269-06
  29. Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., and Ladurner, A.G. (2013). A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 20, 508-514. https://doi.org/10.1038/nsmb.2523
  30. Juszczynski, P., Kutok, J.L., Li, C., Mitra, J., Aguiar, R.C., and Shipp, M.A. (2006). BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol. Cell. Biol. 26, 5348-5359. https://doi.org/10.1128/MCB.02351-05
  31. Jwa, M., and Chang, P. (2012). PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1 alphamediated unfolded protein response. Nat. Cell Biol. 14, 1223-1230. https://doi.org/10.1038/ncb2593
  32. Kang, H.C., Lee, Y.I., Shin, J.H., Andrabi, S.A., Chi, Z.K., Gagne, J.P., Lee, Y.J., Ko, H.S., Lee, B.D., Poirier, G.G., et al. (2011). Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc. Natl. Acad. Sci. USA 108, 14103-14108. https://doi.org/10.1073/pnas.1108799108
  33. Kleine, H., Poreba, E., Lesniewicz, K., Hassa, P.O., Hottiger, M.O., Litchfield, D.W., Shilton, B.H., and Luscher, B. (2008). Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32, 57-69. https://doi.org/10.1016/j.molcel.2008.08.009
  34. Koh, D.W., Lawler, A.M., Poitras, M.F., Sasaki, M., Wattler, S., Nehls, M.C., Stoger, T., Poirier, G.G., Dawson, V.L., and Dawson, T.M. (2004). Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc. Natl. Acad. Sci. USA 101, 17699-17704. https://doi.org/10.1073/pnas.0406182101
  35. Kraus, W.L. (2008). Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr. Opin. Cell Biol. 20, 294-302. https://doi.org/10.1016/j.ceb.2008.03.006
  36. Levaot, N., Voytyuk, O., Dimitriou, I., Sircoulomb, F., Chandrakumar, A., Deckert, M., Krzyzanowski, P.M., Scotter, A., Gu, S., Janmohamed, S., et al. (2011). Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell 147, 1324-1339. https://doi.org/10.1016/j.cell.2011.10.045
  37. Li, M., and Yu, X. (2013). Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23, 693-704. https://doi.org/10.1016/j.ccr.2013.03.025
  38. Li, J., Williams, B.L., Haire, L.F., Goldberg, M., Wilker, E., Durocher, D., Yaffe, M.B., Jackson, S.P., and Smerdon, S.J. (2002). Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell 9, 1045-1054. https://doi.org/10.1016/S1097-2765(02)00527-0
  39. Li, B., Navarro, S., Kasahara, N., and Comai, L. (2004). Identification and biochemical characterization of a Werner's syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J. Biol. Chem. 279, 13659-13667. https://doi.org/10.1074/jbc.M311606200
  40. Li, M., Lu, L.Y., Yang, C.Y., Wang, S., and Yu, X. (2013). The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev. 27, 1752-1768. https://doi.org/10.1101/gad.226357.113
  41. Lin, W., Ame, J.C., Aboul-Ela, N., Jacobson, E.L., and Jacobson, M.K. (1997). Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 272, 11895-11901. https://doi.org/10.1074/jbc.272.18.11895
  42. MacPherson, L., Tamblyn, L., Rajendra, S., Bralha, F., McPherson, J.P., and Matthews, J. (2013). 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res. 41, 1604-1621. https://doi.org/10.1093/nar/gks1337
  43. Matsuno, K., Eastman, D., Mitsiades, T., Quinn, A.M., Carcanciu, M.L., Ordentlich, P., Kadesch, T., and Artavanis-Tsakonas, S. (1998). Human deltex is a conserved regulator of Notch signalling. Nat. Genet. 19, 74-78. https://doi.org/10.1038/ng0598-74
  44. Mehrotra, P., Riley, J.P., Patel, R., Li, F., Voss, L., and Goenka, S. (2011). PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J. Biol. Chem. 286, 1767-1776. https://doi.org/10.1074/jbc.M110.157768
  45. Meyer-Ficca, M.L., Meyer, R.G., Coyle, D.L., Jacobson, E.L., and Jacobson, M.K. (2004). Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp. Cell Res. 297, 521-532. https://doi.org/10.1016/j.yexcr.2004.03.050
  46. Moss, J., Stanley, S.J., Nightingale, M.S., Murtagh, J.J., Jr., Monaco, L., Mishima, K., Chen, H.C., Williamson, K.C., and Tsai, S.C. (1992). Molecular and immunological characterization of ADPribosylarginine hydrolases. J. Biol. Chem. 267, 10481-10488.
  47. Neuvonen, M., and Ahola, T. (2009). Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J. Mol. Biol. 385, 212-225. https://doi.org/10.1016/j.jmb.2008.10.045
  48. Oberoi, J., Richards, M.W., Crumpler, S., Brown, N., Blagg, J., and Bayliss, R. (2010). Structural basis of poly(ADP-ribose) recognition by the multizinc binding domain of checkpoint with forkheadassociated and RING Domains (CHFR). J. Biol. Chem. 285, 39348-39358. https://doi.org/10.1074/jbc.M110.159855
  49. Oka, S., Kato, J., and Moss, J. (2006). Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705-713. https://doi.org/10.1074/jbc.M510290200
  50. Ozaki, Y., Matsui, H., Asou, H., Nagamachi, A., Aki, D., Honda, H., Yasunaga, S., Takihara, Y., Yamamoto, T., Izumi, S., et al. (2012). Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol. Cell 47, 694-706. https://doi.org/10.1016/j.molcel.2012.06.033
  51. Parsons, J.L., Dianova, II, Allinson, S.L., and Dianov, G.L. (2005). Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS J. 272, 2012-2021. https://doi.org/10.1111/j.1742-4658.2005.04628.x
  52. Patel, A.G., Sarkaria, J.N., and Kaufmann, S.H. (2011). Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. USA 108, 3406-3411. https://doi.org/10.1073/pnas.1013715108
  53. Pehrson, J.R., and Fried, V.A. (1992). MacroH2A, a core histone containing a large nonhistone region. Science 257, 1398-1400. https://doi.org/10.1126/science.1529340
  54. Pleschke, J.M., Kleczkowska, H.E., Strohm, M., and Althaus, F.R. (2000). Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275, 40974-40980. https://doi.org/10.1074/jbc.M006520200
  55. Raval-Fernandes, S., Kickhoefer, V.A., Kitchen, C., and Rome, L.H. (2005). Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res. 65, 8846-8852. https://doi.org/10.1158/0008-5472.CAN-05-0770
  56. Riffell, J.L., Lord, C.J., and Ashworth, A. (2012). Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev. Drug Discov. 11, 923-936. https://doi.org/10.1038/nrd3868
  57. Rosenthal, F., Feijs, K.L.H., Frugier, E., Bonalli, M., Forst, A.H., Imhof, R., Winkler, H.C., Fischer, D., Caflisch, A., Hassa, P.O., et al. (2013). Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 20, 502-507. https://doi.org/10.1038/nsmb.2521
  58. Rouleau, M., Patel, A., Hendzel, M.J., Kaufmann, S.H., and Poirier, G.G. (2010). PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293-301. https://doi.org/10.1038/nrc2812
  59. Rulten, S.L., Cortes-Ledesma, F., Guo, L., Iles, N.J., and Caldecott, K.W. (2008). APLF (C2orf13) is a novel component of poly(ADPribose) signaling in mammalian cells. Mol. Cell. Biol. 28, 4620-4628. https://doi.org/10.1128/MCB.02243-07
  60. Rulten, S.L., Fisher, A.E., Robert, I., Zuma, M.C., Rouleau, M., Ju, L., Poirier, G., Reina-San-Martin, B., and Caldecott, K.W. (2011). PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell 41, 33-45. https://doi.org/10.1016/j.molcel.2010.12.006
  61. Ruscetti, T., Lehnert, B.E., Halbrook, J., Le Trong, H., Hoekstra, M.F., Chen, D.J., and Peterson, S.R. (1998). Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273, 14461-14467. https://doi.org/10.1074/jbc.273.23.14461
  62. Sbodio, J.I., Lodish, H.F., and Chi, N.W. (2002). Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomererepeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochem. J. 361, 451-459. https://doi.org/10.1042/0264-6021:3610451
  63. Scarpa, E.S., Fabrizio, G., and Di Girolamo, M. (2013). A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J. 280, 3551-3562. https://doi.org/10.1111/febs.12290
  64. Schreiber, V., Ame, J.C., Dolle, P., Schultz, I., Rinaldi, B., Fraulob, V., Menissier-de Murcia, J., and de Murcia, G. (2002). Poly(ADPribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028-23036. https://doi.org/10.1074/jbc.M202390200
  65. Schreiber, V., Dantzer, F., Ame, J.C., and de Murcia, G. (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517-528. https://doi.org/10.1038/nrm1963
  66. Scolnick, D.M., and Halazonetis, T.D. (2000). Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406, 430-435. https://doi.org/10.1038/35019108
  67. Sharifi, R., Morra, R., Appel, C.D., Tallis, M., Chioza, B., Jankevicius, G., Simpson, M.A., Matic, I., Ozkan, E., Golia, B., et al. (2013). Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32, 1225-1237. https://doi.org/10.1038/emboj.2013.51
  68. Slade, D., Dunstan, M.S., Barkauskaite, E., Weston, R., Lafite, P., Dixon, N., Ahel, M., Leys, D., and Ahel, I. (2011). The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477, 616-620. https://doi.org/10.1038/nature10404
  69. Smith, S., and de Lange, T. (2000). Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299-1302. https://doi.org/10.1016/S0960-9822(00)00752-1
  70. Smith, S., Giriat, I., Schmitt, A., and de Lange, T. (1998). Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484-1487. https://doi.org/10.1126/science.282.5393.1484
  71. Tuncel, H., Tanaka, S., Oka, S., Nakai, S., Fukutomi, R., Okamoto, M., Ota, T., Kaneko, H., Tatsuka, M., and Shimamoto, F. (2012). PARP6, a mono(ADP-ribosyl) transferase and a negative regulator of cell proliferation, is involved in colorectal cancer development. Int. J. Oncol. 41, 2079-2086. https://doi.org/10.3892/ijo.2012.1652
  72. Venkannagari, H., Fallarero, A., Feijs, K.L.H., Luscher, B., and Lehtio, L. (2013). Activity-based assay for human mono-ADPribosyltransferases ARTD7/PARP15 and ARTD10/PARP10 aimed at screening and profiling inhibitors. Eur. J. Pharm. Sci. 49, 148-156. https://doi.org/10.1016/j.ejps.2013.02.012
  73. Wang, Z., Michaud, G.A., Cheng, Z., Zhang, Y., Hinds, T.R., Fan, E., Cong, F., and Xu, W. (2012). Recognition of the iso-ADPribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 26, 235-240. https://doi.org/10.1101/gad.182618.111
  74. Yan, Q., Xu, R., Zhu, L., Cheng, X., Wang, Z., Manis, J., and Shipp, M.A. (2013). BAL1 and its partner E3 ligase, BBAP, link Poly(ADPribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol. Cell. Biol. 33, 845-857. https://doi.org/10.1128/MCB.00990-12
  75. Yu, X., Chini, C.C., He, M., Mer, G., and Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science 302, 639-642. https://doi.org/10.1126/science.1088753
  76. Yu, M., Schreek, S., Cerni, C., Schamberger, C., Lesniewicz, K., Poreba, E., Vervoorts, J., Walsemann, G., Grotzinger, J., Kremmer, E., et al. (2005). PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24, 1982-1993. https://doi.org/10.1038/sj.onc.1208410
  77. Yu, S.W., Andrabi, S.A., Wang, H., Kim, N.S., Poirier, G.G., Dawson, T.M., and Dawson, V.L. (2006). Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc. Natl. Acad. Sci. USA 103, 18314-18319. https://doi.org/10.1073/pnas.0606528103
  78. Zhang, Y., Liu, S., Mickanin, C., Feng, Y., Charlat, O., Michaud, G.A., Schirle, M., Shi, X., Hild, M., Bauer, A., et al. (2011a). RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13, 623-629. https://doi.org/10.1038/ncb2222
  79. Zhang, Y., Liu, S.M., Mickanin, C., Feng, Y., Charlat, O., Michaud, G.A., Schirle, M., Shi, X.Y., Hild, M., Bauer, A., et al. (2011b). RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13, 623-U292. https://doi.org/10.1038/ncb2222
  80. Zhong, Q., Gao, W., Du, F., and Wang, X. (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085-1095. https://doi.org/10.1016/j.cell.2005.06.009

Cited by

  1. Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis vol.38, pp.4, 2015, https://doi.org/10.14348/molcells.2015.2142
  2. The role of poly ADP-ribosylation in the first wave of DNA damage response vol.45, pp.14, 2017, https://doi.org/10.1093/nar/gkx565
  3. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats vol.41, pp.10, 2016, https://doi.org/10.1007/s11064-016-1964-3
  4. Metabolism and chromatin dynamics in health and disease vol.54, 2017, https://doi.org/10.1016/j.mam.2016.09.004
  5. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases 2018, https://doi.org/10.1111/bph.13748
  6. PARP Inhibition Suppresses Growth of EGFR-Mutant Cancers by Targeting Nuclear PKM2 vol.15, pp.4, 2016, https://doi.org/10.1016/j.celrep.2016.03.070
  7. Genetic Association of PARP15 Polymorphisms with Clinical Outcome of Acute Myeloid Leukemia in a Korean Population vol.20, pp.11, 2016, https://doi.org/10.1089/gtmb.2016.0007
  8. Peroxisome biogenesis in mammalian cells: The impact of genes and environment vol.1863, pp.5, 2016, https://doi.org/10.1016/j.bbamcr.2015.08.011
  9. Poly(ADP-ribosylation) and neurodegenerative disorders vol.24, 2015, https://doi.org/10.1016/j.mito.2015.07.005
  10. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity vol.83, pp.1, 2018, https://doi.org/10.1128/MMBR.00038-18
  11. IER5 is involved in DNA Double-Strand Breaks Repair in Association with PAPR1 in Hela Cells vol.14, pp.12, 2014, https://doi.org/10.7150/ijms.21510
  12. Poly (ADP-Ribose) Polymerases (PARPs) and PARP Inhibitor-Targeted Therapeutics vol.19, pp.2, 2019, https://doi.org/10.2174/1871520618666181109164645
  13. HMGA 2 as a functional antagonist of PARP 1 inhibitors in tumor cells vol.13, pp.2, 2014, https://doi.org/10.1002/1878-0261.12390
  14. Poly( ADP ‐ribosyl)ation of BRD 7 by PARP 1 confers resistance to DNA ‐damaging chemotherapeutic agents vol.20, pp.5, 2014, https://doi.org/10.15252/embr.201846166
  15. Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-12377-1
  16. In Sulfolobus solfataricus , the Poly(ADP-Ribose) Polymerase-Like Thermoprotein Is a Multifunctional Enzyme vol.8, pp.10, 2014, https://doi.org/10.3390/microorganisms8101523
  17. Ewing sarcoma protein promotes dissociation of poly( ADP ‐ribose) polymerase 1 from chromatin vol.21, pp.11, 2014, https://doi.org/10.15252/embr.201948676
  18. Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-78116-5
  19. Congenital heart disease risk loci identified by genome-wide association study in European patients vol.131, pp.2, 2021, https://doi.org/10.1172/jci141837
  20. Poly(ADP)-Ribosylation Inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy vol.13, pp.19, 2021, https://doi.org/10.3390/cancers13194973
  21. Comparative proteomic profiling in Chinese shrimp Fenneropenaeus chinensis under low pH stress vol.120, pp.None, 2022, https://doi.org/10.1016/j.fsi.2021.12.032