• Title/Summary/Keyword: Rhodococcus sp.

Search Result 77, Processing Time 0.029 seconds

페놀 분해 Rhodococcus sp. DGUM 2011의 분리 및 특성

  • 오정석;한영환
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.459-463
    • /
    • 1997
  • A bacterium DGUM 2011 has been selected from various samples of industrial wastewater and soil. Based on the morphological and physiological characteristics, the isolate DGUM 2011 was identified as Rhodococcus sp. and named as Rhodococcus sp. DGUM 2011. The optimal temperature and pH for the cell growth of Rhodococcus sp. DGUM 2011 were 37$\circ$C and 7.6, respectively. When phenol was added to the minimal media as a sole source of carbon and energy, the concentrations of maximum and optimum for cell growth was 0.10% and 0.08%, respectively. When 0.05% phenol was given in the minimal media, Rhodococcus sp. DGUM 2011 completely utilize it within 24 hrs. The isolate could utilize benzoic acid, p-hydroxybenzoate, p-cresol, tyrosine and phloroglucinol. The isolate possessed both catechol 1,2-dioxygenase and 2,3-dioxygenase activity. However, the activity of catechol 1,2-dioxygenase was much higher than that of 2,3-dioxygenase, which suggests that the isolate might degrade phenol via both ortho- and meta-cleavage, mainly via ortho-cleavage.

  • PDF

Biodegradation of Phenol by a Trichloroethylene-cometabolizing Bacterium

  • Park, Geun-Tae;Son, Hong-Joo;Kim, Jong-Goo;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.61-66
    • /
    • 1998
  • A microorganism which degrades phenol and co-metabolizes trichloroethylene (TCE) was isolated from Yangsan stream after enrichment in a medium containing phenol as the sole carbon source. The isolate EL-43P was identified as the genus Rhodococcus by its morphological, cultural and physiological characteristics. Phenol-induced cells of Rhodococcus sp. EL-43P degraded TCE. Toluene and nutrient broth could not replace the phenol requirement. The optimal conditions of initial pH and temperature of media for growth were 7.0~9.0 and $30~50^{\circ}C$, respectively. Rhodococcus sp. EL-43P could grow with phenol up to 1,000 ppm. Growth was inhibited by phenol at a concentration above 1,500 ppm. It was observed that Rhodococcus sp. EL-43P was able to degrade 90% of phenol (1,000 ppm) after 40 h in a culture. Phenol-induced cells of Rhodococcus sp. EL-43P degraded 95% of $5{\mu}M$ TCE in 6 h. Rhodococcus sp. EL-43P hardly degraded TCE above $100{\mu}M$.

  • PDF

Cosmical Analysis and Interfacial Characterization of Biosurfactants formed by Rhodococcus. Sp. strain IGTS8 during the Biodesulfurization Process (미생물 탈황 공정 중 Rhodococcus sp. strain IGTS8에 의하여 생성되는 Biosurfactants의 성분 분석 및 계면특성)

  • 박홍우;박기돈;오성근
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.302-306
    • /
    • 2002
  • The chemical analysis and surface chemical properties of biosurfactant formed by Rhodococcus sp. strain IGTS8, which is widely used in biodesulfurization process, in hexadecane/water mixture have been studied. For the chemical analysis, TLC technique was employed. The surface tension, CMC, and emulsion stability of biosurfactant solution were also investigated. The major components of biosurfactant formed by Rhodococcus sp. strain IGTS8 were glucose mycolate and trehalose monomycolate. The CMC of aqueous biosurfactant solution was 0.1 ~0.15 g/100 mL of Water at pH 6.0-6.5 and pH 10~10.5. But the demulsification was faster at pH 10 than at pH 6.3.

Bioremediation of Oil-Contaminated Soil Using an Oil-Degrading Rhizobacterium Rhodococcus sp.412 and Zea mays. (유류 분해 근권세균 Rhodococcus sp. 412와 옥수수를 활용한 유류 오염 토양의 정화)

  • Hong, Sun-Hwa;Park, Hae-Lim;Ko, U-Ri;Yoo, Jae-Jun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.150-157
    • /
    • 2007
  • The advanced bioremediation of diesel-contaminated soil through the exploration of bacterial interaction with plants was studied. A diesel-degrading rhizobacterium, Rhodococcus sp.412, and a plant species, Zea mays, having tolerant against diesel was selected. Zea mays was seeded in uncontaminated soil or diesel-contaminated soil with or without Rhodococcus sp. 412. After cultivating for 30 days, the growth of Zea mays in the contaminated soil inoculated with Rhodococcus sp. 412 was better than that in the contaminated soil without the bacterium. The residual diesel concentrations were lowered by seeding Zea mays or inoculating Rhodococctis sp. 412. These results Indicate that the simultaneous use of Zea mays and Rhodococcus sp. 412 can give beneficial effect to the remediation of oil-contaminated soil. Bacterial community was characterized using a 16S rDNA PCR and denaturing gradient gel electrophoresis (DGGE) fingerprinting method. The similarities of DGGE fingerprints were $20.8{\sim}39.9%$ between the uncontaminated soil and diesel contaminated soil. The similarities of DGGE fingerprints were $21.9%{\sim}53.6%$ between the uncontaminated soil samples, and $31.6%{\sim}50.0%$ between the diesel-contaminated soil samples. This results indicated that the structure of bacterial community was significantly influence by diesel contamination.

Isolation of Cholesterol Utilizing Bacteria and Their Degradation Pattern (콜레스테롤 이용 박테리아의 분리 및 분해 특성)

  • 최민호;조도현;박연희
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.340-346
    • /
    • 1994
  • Six bacterial strains capable to grow on medium containing cholesterol as sole carbon source were isolated from soil, pork fat and cheese. Three of them were tentatively identified as Rhodococcus species, Rhodococcus sp. CD-1, R. sp. CD-2, and R. sp. CD-3. All the isolates showed a varying amount of cholest-4-en-3-one as the degradation product, and three strains of Rhodococcus spp. showed rapid degradation of cholesterol. Radioisotopic studies revealed that cholesterol was degraded to non-sterol hydrophilic compounds via cholest-4-en-3-one, and presumably to C0$_{2}$- These strains showed two distinct patterns in further degradation of cholest-4-en-3-one. By one group, R. sp. CD-1 and R. sp. CD-3, cholest-4-en-3-one was rapidly converted to non-sterol inter- mediates without significant accumulation of sterol derivatives in the culture broth. In contrast, by another group, R. sp. CD-2, the substantial amount of cholest-4-en-3-one was accumulated indica- ting a lower conversion of the compound to the next metabolites.

  • PDF

Characterization of Hexane Biodegradation by Rhodococcus sp. EH741 (Rhodococcus sp. EH741에 의한 Hexane 생분해 특성)

  • Lee, Eun-Hee;Cho, Kyung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • As a strain EH741, having an excellent hexane degradability, was isolated from bacterial consortium using hexane as a sole carbon and energy source. EH741 was identified as a Rhodococcus sp. and the addition of a surfactant Pluronic F68(PF68), for increasing hexane solubility couldn't enhance the specific growth rate of the isolate EH741 n the mineral salt medium supplemented with hexane as a sole carbon source(hexane-BH medium). In the hexane-BH medium, the maximum specific growth rate(${\mu}_{max}$) of this strain was $0.04h^{-1}$, and the maximum hexane degradation rate($V_{max}$) and saturation constant($K_s$) were$161{\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ and 10.5 mM, respectively. Rhodococcus sp. EH741 was one of excellent microorgamisms for hexane biodegradation processes.

Characterization and refinement of enzyme of the gene encoding catechol 1,2-dioxygenase from Phenol-degrading, Rhodococcus sp.

  • 이희정;박근태;박재림;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.209-212
    • /
    • 2002
  • The heavy use of petroleum products in modern livings has brought ubiquitous environmental contaminants of aromatic compounds, which persist in aquatic and geo-environment without the substantial degradation. The persistence and accumulation of the aromatic compounds, which include xylene, phenol, toluene, phthalate, and so on are known to cause serious problems in our environments. Some of soil and aquatic microorganisms facilitate their growth by degrading aromatic compounds and utilizing degrading products as growth substrates, the biodegradation helps the reentry of carbons of aromatic compounds, preventing their accumulation in our environments. The metabolic studies on the degradation of aromatic compounds by microoganlsms were extensively carried out along with their genetic studies. A Rhodococcus sp. isolated in activated sludges has shown the excellent ability to grow on phenol as a sole carbon source. In the present study investigated a gene encoding phenol-degrading enzymes from a Rhodococcus sp.

  • PDF

Effect of Nonionic Surfactant SPAN 20 on the Biodesulfurization Process by Rhodococcus sp. strain IGTS8 (비이온 계면활성제인 SPAN 20 이 Rhodococcus sp. Strain IGTS8을 이용한 미생물 탈황공정에 미치는 영향)

  • 박홍우;박기돈;오성근
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.295-301
    • /
    • 2002
  • The effects of nonionic surfactant (SPAN 20) on the desulfurization process by Rhodococcus sp. strain IGTS8 have been investigated at various oil/water ratios, pHs and concentrations of surfactant. The hexadecane containing DBT was employed as model oil. The presence of surfactant in the oil/water mixture stabilized the oil/water interface, thus enhanced the efficiency of desulfurization. The volume percentages of oil in the oil/water mixture were 30, 50 and 70%. The concentrations of surfactant were varied from 0 to 0.33 wt% relative to water phase. In general, the biodesulfurization efficiencies were decreased as the concentration of SPAN 20 and the volume percentage of oil phase increased.

Microbial Biodegradation and Toxicity of Vinclozolin and its Toxic Metabolite 3,5-Dichloroaniline

  • Lee, Jung-Bok;Sohn, Ho-Yong;Shin, Kee-Sun;Kim, Jong-Sik;Jo, Min-Sub;Jeon, Chun-Pyo;Jang, Jong-Ok;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.343-349
    • /
    • 2008
  • Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5-dichloroaniline in a minimal medium containing vinclozolin $(200{\mu}ml)$ or 3,5-dichloroaniline $(120{\mu}g/ml)$ were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

Rhodococcus sp.EL-GT의 페놀 분해특성

  • 이희정;최정순;차미선;이상준;박근태;박재림
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.164-165
    • /
    • 2001
  • 본 연구는 방향족 화합물질 중 페놀폐수에 대한 생물학적 처리를 위해 본 실험실에서 분리한 페놀분해능이 우수한 Rhodococcus sp. EL-GT의 catechol 분해시 1,2-dioxygenase 분해활성이 높은 것으로 보아 분해경로가 ortho-pathway임을 알 수 있었다. 향후 Rhodococcus sp. EL-GT의 페놀분해 균의 유전학적 연구를 통하여 방향족 화합물의 분해에 보다 우수한 균으로 개발시켜 효율적인 처리에 이용가능성을 예측할 수 있었다.

  • PDF