• Title/Summary/Keyword: Reynolds-averaged navier-stokes analysis

Search Result 302, Processing Time 0.035 seconds

Numerical Study on Inertial Oscillations in the Spin-up of Fluid in a Circular Cylinder (원통 내 스핀업 유동에서의 관성진동에 관한 수치해석적 연구)

  • 서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.9-19
    • /
    • 2001
  • In this paper we present the aspect of inertial oscillation typically observed in the spin-up of fluids at low Rossby numbers in a circular cylinder. Numerical computations for the quasi three-dimensional equation as well as one-dimensional equation are performed to estimate the predictability of the one-dimensional equation with Ekman pumping/suction models. It is assumed that the discrepancy between the two results may be attributed to the inertial oscillation The detailed analysis to the numerical results reveals that the axial plane is dominated by a comparatively strong oscillatory flows caused by the inertial oscillation. In view of the fact that the time-averaged flow field however agrees to the Taylor-Proudman theorem, it is recommended that further analysis is needed to obtain an improved one-dimensional model like the Reynolds-averaged Navier-Stokes equation for turbulent flows.

  • PDF

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

A STUDY FOR ROUGHNESS FUNCTION OF FLAT PLATE WITH REYNOLDS NUMBER (레이놀즈수에 따른 평판 모델의 거칠기 함수에 관한 연구)

  • Joung, T.H.;Lee, J.H.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this paper, turbulence models for considering roughness in the open source code(OpenFOAM) was investigated. Wall function in the RANS(Reynolds-averaged Navier - Stokes) turbulence model was modified considering roughness on the flat plate by using roughness function. Correlation between the first layer height in the CFD model and roughness height of the plate was observed, and the most proper roughness function, and the first layer height from the plate wall in the CFD analysis was suggested in this paper.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Shape Optimization of Cylindrical Film-Cooling Hole Using Kriging Method (크리깅 기법을 이용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2729-2732
    • /
    • 2008
  • Cylindrical film-cooling hole is formulated numerically and optimized to enhance film-cooling effectiveness. The Kriging method is used an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid and heat transfer with shear stress transport model. The hole length-to-diameter ratio and injection angle are chosen as design variables and spatially averaged film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points obtained by Latin Hypercube Sampling for two design variables. Optimum shape shows the film-cooling effectiveness increased.

  • PDF

Numerical Analysis of the Vortex Shedding past a Square Cylinder with Moving Ground (지면 운동에 따른 정사각주 후류의 와류 유동장 수치 해석 Part I. 고정 지면과 이동 지면 비교)

  • Kim, Tae-Yoon;Lee, Bo-Sung;Lee, Dong-Ho;Kohama, Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.1-7
    • /
    • 2005
  • Incompressible Reynolds-averaged Navier-Stokes equations with $\varepsilon{-SST}$ turbulence model are adopted for the investigation of the flow fields between the square cylinder and the ground. When the grounds moves, the diminish of the shear layer intensity on the ground promotes the interaction between the lower and the upper separated shear layer of the cylinder. Hence vortex shedding occurs at the lower gap height than stationary ground. In the moving ground, the secondary shedding frequency disappears due to the absence of the separation bubble on the ground which exists in the stationary ground. In addition, the shedding frequency and aerodynamic coefficients in the moving ground become higher than those of the stationary ground.

Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

  • Lee, Hyung-Ro;Lee, Seung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.318-330
    • /
    • 2011
  • This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (${\alpha}_u$) and the artificial compressibility (${\beta}$) in conjunction with an upwind method. For the investigations, a code using the modified artificial compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The cell-centered finite volume method is used in conjunction with Roe's approximate Riemann solver for the inviscid flux, and the central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-alternate direction implicit method. In addition, Menter's k-${\omega}$ shear stress transport turbulence model is adopted for analysis of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial compressibility method with ${\alpha}_u$ >1.0 is given.

Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D (FLOW-3D를 이용한 우이천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Oh, Keun-Taek;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF