• Title/Summary/Keyword: Reynolds numbers

Search Result 643, Processing Time 0.026 seconds

A Numerical Study of the Heat Transfer Characteristics in a Printed Circuit Board (PCB내의 열전달특성에 관한 수치적 연구)

  • Pak, H.Y.;Park, K.W.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.461-472
    • /
    • 1995
  • The interaction of laminar mixed convection and surface radiation in a two-dimensional channel with an array of rectangular blocks is analyzed numerically. Three blocks are maintained at high temperature and the other bottom and top horizontal walls are insulated. Discrete ordinate method(DOM) is introduced to analyze the radiative heat transfer. The effects of the variations of Reynolds number and channel specifications on the heat transfer characteristics are investigated. The average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number and dimensionless geometric parameters such as the block spacing, height and channel spacing. For the conditions considered in this study, average Nusselt numbers along the block surfaces are strongly influenced by the channel spacing and Reynolds number but weakly influenced by the block spacing and block height.

  • PDF

Flow Efficiency in Multi-Louvered Fins Having Large Louver-to-Fin Pitch Ratio

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Kim, Do-Young;Kim, Hyun-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.156-162
    • /
    • 2007
  • Flow visualization experiments were conducted for two louver arrays having large louver pitch ratio ($L_p/F_p=1.0$ and 1.4). Flow efficiencies and critical Reynolds numbers were obtained from the data, and were compared with existing correlations. The correlations failed to predict the present flow efficiency data adequately; some correlation overpredicted the data, while others underpredicted the data. Large louver pitch ratio of the present model, which is outside of the applicable range of the correlations may partly be responsible. The critical Reynolds numbers obtained from the present flow visualization data were in close agreement with those obtained from the heat transfer tests on actual flat tube heat exchangers. Existing correlations on the critical Reynolds number generally overpredicted the present data.

Experimental investigation on vortex induced forces of oscillating cylinder at high Reynolds number

  • Xu, Yuwang;Fu, Shixiao;Chen, Ying;Zhong, Qian;Fan, Dixia
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.167-180
    • /
    • 2013
  • Hydrodynamic characteristics of a bluff cylinder oscillating along transverse direction in steady flow were experimentally investigated at Reynolds number of $2{\times}10^5$. The effects of non-dimensional frequency, oscillating amplitude and Reynolds number on drag force, lift force and phase angle are studied. Vortex shedding mechanics is applied to explain the experimental results. The results show that explicit similarities exist for hydrodynamic characteristics of an oscillating cylinder in high and low Reynolds number within subcritical regime. Consequently, it is reasonable to utilize the test data at low Reynolds number to predict vortex induced vibration of risers in real sea state when the Reynolds numbers are in the same regime.

An Experimental Study on the Convection Heat Transfer of Al-Mg/water Micro Fluid in a Circular Tube with Swirl

  • Chang, Tae-Hyun;Kim, Chiwon;Kil, Sang-Cheol;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.869-875
    • /
    • 2012
  • In the past decades, extensive studies on convection heat transfer on internal flow have been conducted by using high specific surface area, by increasing heat transfer coefficient and swirl flow, and by improving the transport properties. In this study, we applied a tangential slot swirl generator to improve heat transfer in a horizontal circular copper tube. The Al-Mg particles (approximately $100{\mu}m$ to $130{\mu}m$) were employed for this experimental work. The copper tube was heated uniformly by winding a heating coil with a resistance of 9 ohm per meter for heat transfer. Using Al-Mg particles, experiments were performed in the Reynolds number range of 5,000 to 13,130, with and without swirl. Experimental data transfers or comparisons between Nusselt numbers with and without swirl along the test tube and Reynolds numbers are presented. The Nusselt number is improved by increasing Reynolds numbers or swirl intensities along the test tube.

An Experimental Study on the Convection heat Transfer of Al-Mg/water Micro Fluid in a Circular Tube with Swirl (선회유동장에서 Al-Mg/물 마이크로 유동의 대류 열전달에 대한 실험적 연구)

  • Chang, Tae-Hyun;Kim, Chi-Woon;Kil, Sang-Cheol;Lee, Chang-Hoan
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.16-20
    • /
    • 2012
  • In the past decades, extensive studies on convection heat transfer on internal flow have been conducted by using high specific surface area, by increasing heat transfer coefficient and swirl flow, and by improving the transport properties. In this study, we applied a tangential slot swirl generator to improve heat transfer in a horizontal circular copper tube. The Al-Mg particles (approximately $100{\mu}m$ to $130{\mu}m$) were employed for this experimental work. The copper tube was heated uniformly by winding a heating coil with a resistance of 9ohm per meter for heat transfer. Using Al-Mg particles, experiments were performed in the Reynolds number range of 5,000 to 13,130, with and without swirl. Experimental data transfers or comparisons between Nusselt numbers with and without swirl along the test tube and Reynolds numbers are presented. The Nusselt number is improved by increasing Reynolds numbers or swirl intensities along the test tube.

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Hierarchical structure parameters in three dimensional turbulence: She-Leveque model

  • Ahmad, Imtiaz;Hadj-Taieb, Lamjed;Hussain, Muzamal;Khadimallah, Mohamed A.;Taj, Muhammad;Alshoaibi, Adil
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.747-755
    • /
    • 2022
  • Hierarchical structure parameters, proposed in She-Leveque model, are investigated for velocity components obtained from different flow types over a large range of Reynolds numbers 255 < Re𝜆 < 720. The values of intermittency parameter 𝛽, with respect to a fixed velocity component, are observed nearly same for all four types of turbulence. The parameter 𝛾, for streamwise velocity components is nearly the same but significantly different for vertical components in different flows. It is also observed that for both parameters, an obvious relation between the longitudinal and transverse components 𝛽T < 𝛽L (and 𝛾T < 𝛾L) always holds. However, the difference between 𝛽L and 𝛽T is found very small in all types of turbulent flows, we studied here. It is evidenced that at low Reynolds numbers, the deviations from K41 scaling are mainly due to the most intense structures and slightly because of more heterogeneous hierarchy of fluctuation structures. However, at higher Reynolds numbers the deviations seem as a consequence of the most intense structures only. Over all, the study suggests that the hierarchy parameter 𝛽 may be consider as a universal constant.

Numerical Investigation on Flow Pattern over Backward-Facing Step for Various Step Angles and Reynolds numbers

  • Lee, Jeong Hu;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.60-60
    • /
    • 2021
  • Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).

  • PDF

Characteristics of Vortex Shedding behind a Circular Cylinder with Serrated Fins (Serrated Fin이 부착된 튜브의 와유출특성 연구)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.570-575
    • /
    • 2001
  • An experimental study is performed to investigate the characteristics of vortex shedding behind a circular cylinder with serrated fins using hot-wire anemometer. Strouhal numbers which are calculated using outer diameter of a circular cylinder with serrated fins are higher than that of a circular cylinder. Fin thickness and pitch are closely related with vortex shedding frequency and play increasing or decreasing vortex shedding after transient Reynolds numbers. Strouhal numbers using effective diameters which are proposed in this paper agree with that of a circular cylinder. After transient Reynolds number, a trend of Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter.

  • PDF

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF