• Title/Summary/Keyword: Reynolds Averaged Navier-Stokes Equation

Search Result 161, Processing Time 0.033 seconds

Numerical Simulation of Supersonic Inlet Flow (초음속 흡입구 유동의 수치모사)

  • Kwak, Ein-Keun;Yoo, Il-Yong;Lee, Seung-Soo;Jung, Suk-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.133-137
    • /
    • 2009
  • Numerical simulations of flows in an axisymmetric supersonic inlet with bleed regions were performed. For the simulations, the existing code which solves the RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was transformed to axisymmetric form and bleed boundary condition was applied to the code. In this paper, the modified code was validated by comparing the results against an experimental data and other computational results for flow on a bump and over an oblique shock with bleed region. Using the code, numerical simulations were performed for the flow in the inlet with multiple bleed regions.

  • PDF

Pollutant Dispersion Analysis Using the Gaussian Puff Model with the Numerical Flowfield Information (유동장 수치해석이 포함된 퍼프모델을 이용한 오염물질의 확산 해석)

  • Jung Y. R.;Park W. G.;Park O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.12-20
    • /
    • 1999
  • The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier-Stokes equation with low Reynolds κ-ε model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier-Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees flirty well with experiments.

  • PDF

Hybrid RANS/LES Method for Turbulent Channel Flow (채널난류유동에 대한 하이브리드 RANS/LES 방법)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1088-1094
    • /
    • 2002
  • A channel flow with a high Reynolds number but coarse grids is numerically studied to investigate the prediction possibility of its turbulence which is three-dimensional and time-dependent. In the present paper, a Reynolds-Averaged Navier-Stokes (RANS) model, a Large Eddy Simulation (LES) and a Navier-Stokes equation with no model are tested with a new approach of hybrid RANS/LES, which reduces to RANS model in the boundary layers and at separation, and to Smagorinsky-like LES downstream of separation, and then compared with each other. It is found that the simulations of hybrid RANS/LES method sustain turbulence like those of LES and with no model, and the results are stable and fairly accurate. This indicates strongly that gradual improvements could lead to a simple, stable, and accurate approach to predict turbulence phenomena of wall-bounded flow.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis (삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

Numerical Analysis of Flow and Pollutant Dispersion over 2-D Bell Shaped Hills

  • Jung, Young-Rae;Park, Keun;Park, Warn-Gyu;Park, Ok-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1054-1062
    • /
    • 2003
  • The numerical simulations of flow and pollutant particle dispersion are described for two-dimensional bell shaped hills with various aspect ratios. The Reynolds-averaged incompressible Navier-Stokes equations with low Reynolds number $\kappa$-$\varepsilon$ turbulent model are used to simulate the flowfield. The gradient diffusion equation is used to solve the pollutant dispersion field. The code was validated by comparison of velocity, turbulent kinetic energy, Reynolds shear stress, speed-up ratio, and ground level concentration with experimental and numerical data. Good agreement has been achieved and it has been found that the pollutant dispersion pattern and ground level concentration have been strongly influenced by the hill shape and aspect ratio, as well as the location and height of the source.

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

Three-Dimensional Navier-Stokes Analysis of the Flow through A Multiblade Centrifugal Fan (원심다익송풍기 유동의 삼차원 Navier-Stakes 해석)

  • Seo, Seoung-Jin;Chen, Xi;Kim, Kwang-Yong;Kang, Shin-Hyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.42-48
    • /
    • 1998
  • Numerical study is presented for the analysis of three-dimensional incompressible turbulent flows in multiblade centrifugal fan. Reynolds-averaged Navier-Stokes equations with standard k - $\epsilon$ turbulence model are transformed to non-orthogonal curvilinear coordinates, and are discretized with finite volume approximations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational area is divided into three blocks; core, impeller and scroll, which are linked by multi-block method. The flow inside of the fan is regarded as steady flow, and mathematical formula established from the cascade theory and empirical coefficient are employed to simulate tile flow through the impeller. From comparisons between the computational results and the experimental data, the validity of the mathematical formula for the blade forces was examined and good results were obtained qualitatively. Hence, we can get the flow characteristics of multi-blade centrifugal fan and it will be a corner stone of the development of the multiblade centrifugal fan.

  • PDF

Influence of the Leading Edge Shape of a 2-Dimensional hydrofoil on Cavitation Characteristics (2차원 날개단면의 앞날 형상 변화에 따른 캐비테이션 특성 연구)

  • I.H. Song;J.W. Ahn;I.S. Moon;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to improve cavitation characteristics for a high-speed propeller, leading edge shape of a 2-D hydrofoil is investigated numerically and experimentally. For flowfield analysis around the leading edge, the incompressible Reynolds Averaged Navier-Stokes(RANS) equation is solved using the standard $k-\varepsilon$ turbulence model and a finite volume method(FVM). The cavitation thickness, which is occurred on hydrofoil surface, is predicted using the panel code. It is shown that the calculation codes predict the experimental trend fairly well. From these results, new hydrofoils are designed

  • PDF

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.