• 제목/요약/키워드: Reynolds Averaged Navier-Stokes(RANS)

검색결과 247건 처리시간 0.025초

빙해선박 아이스 클래스 루버의 해빙(de-icing) 성능평가 및 설계기준에 관한 연구 (A Study on the De-Icing Performance Evaluation and Design Guide for Ice Class Louver of the Vessels Operating in Cold Region)

  • 정영준;서영교
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.323-329
    • /
    • 2015
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the ice class louver which installed the heating cables by using ANSYS 13.0 CFX. The numerical analysis was performed by considering Unsteady Reynolds Averaged Navier Stokes (RANS) equation. This study based on the experimental results of ‘The Cryogenic Performance Evaluation for the Excellent De-icing Ice Class Louver’ in KRISO. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the ice class louver was used. The external environmental temperature which varies from 0℃ to –30℃ was considered in numerical analysis. Also the design guide for optimum de-icing presented through heating cable power capacity(33 W/m, 45 W/m, 66 W/m), location of the heating cable(front, center, behind on the blade) and relative velocity(1 m/s, 4 m/s, 7 m/s).

CFD를 이용한 Tanker의 침로안정성 평가 (Evaluation of Course Stability Performance for Tanker using CFD)

  • 홍춘범;양희준
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.523-529
    • /
    • 2008
  • The course stability performance for tankers is evaluated by computational fluid dynamics. In the present work, a Reynolds averaged Navier-Stokes (RANS) code is applied to a maneuvering problem covering the pure drift and yaw motions. The purposes of this study are to evaluate the hydrodynamic force in the bare hull (AFRAMAX) in pure drift and yaw motion and to provide information about the trends in the forces and moments when the rudder angles are varied. The flow simulation is performed by FLUENT. The CFD code is examined to find the optimistic computational condition such as size of grid, turbulence model and initial condition. The hydrodynamic derivatives in drift and pure yaw motion are estimated by the numerical simulation, and then the stability levers are calculated. It is confirmed that the computations show the superiority and inferiority of course stability performance according to the hull forms. Finally, the CFD code is applied to the estimation of the rudder forces when the rudder angles are varied. The propeller effect expressed by the body force distribution is also included.

유체-입자 연성 운동에 의한 굽힘형 배관의 침식률 수치해석 (Numerical Simulation of Erosion Rate on Pipe Elbow Using Coupled Behavior of Fluid and Particle)

  • 장호상;이하원;황세윤;이장현
    • 한국해양공학회지
    • /
    • 제31권1호
    • /
    • pp.14-21
    • /
    • 2017
  • The erosion of solid particles in a pipe elbow was numerically investigated. A numerical procedure to estimate the sand erosion rate, as well as the particle motion, in the pipe elbow flow was introduced. This procedure was performed based on the combined empirical erosion model and computational fluid dynamics (CFD) analysis to consider the interaction between the particle motion and the eroded surface. The underlying turbulent flow on an Eulerian frame is described by the Reynolds averaged Navier-Stokes (RANS) equations with a $k-{\epsilon}$ turbulent model. The one-way coupled Eulerian-Lagrangian motion of the air flow and sand particles is employed to simulate the particle trajectories and particle-wall interactions on the pipe surfaces. The predicted CFD erosion magnitudes are compared with experimental data from pipe elbows. The erosion rate results do not reveal a good accordance between the simulation and experimental results. It seems that the CFD shows a slightly over-predicted erosion ratio.

천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석 (NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER)

  • 박일룡
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계 (3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE)

  • 정재호;유철;이정상;김기현;최재웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가 (Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape)

  • 조성휘;김홍집;이명희
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사 (Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.

축류홴 익단누설와류의 수치적 해석 (Numerical Analysis of a Tip Leakage Vortex in an Axial Flow Fan)

  • 장춘만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.36-44
    • /
    • 2004
  • Three-dimensional vortical flow and separated flow topology near the casing wall in an axial flow fan having two different tip clearances have been investigated by a Reynolds-averaged Navier-Stokes (RANS) flow simulation. The simulation shows that the tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction. On the casing wall, a separation line is formed upstream of the leakage vortex center due to the interference between the leakage vortex and main flow. The reverse flow is observed between the separation line and the attachment line generated downstream of the trailing edge, and increased with enlarging tip clearance. The patterns of a leakage velocity vector including a leakage flow rate are also analyzed according to two tip clearances. It is noted that the understanding of the distribution of a limiting streamline on the casing wall is very important to grasp the characteristics of the vortical flow in the axial flow fan.

비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석 (Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers)

  • 김민건;안형택;이진태;이홍기
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.