• Title/Summary/Keyword: Reviews analysis

Search Result 1,892, Processing Time 0.028 seconds

The Impact of Product Review Usefulness on the Digital Market Consumers Distribution

  • Seung-Yong LEE;Seung-wha (Andy) CHUNG;Sun-Ju PARK
    • Journal of Distribution Science
    • /
    • v.22 no.3
    • /
    • pp.113-124
    • /
    • 2024
  • Purpose: This study is a quantitative study and analyzes the effect of evaluating the extreme and usefulness of product reviews on sales performance by using text mining techniques based on product review big data. We investigate whether the perceived helpfulness of product reviews serves as a mediating factor in the impact of product review extremity on sales performance. Research design, data and methodology: The analysis emphasizes customer interaction factors associated with both product review helpfulness and sales performance. Out of the 8.26 million Amazon product reviews in the book category collected by He & McAuley (2016), text mining using natural language processing methodology was performed on 300,000 product reviews, and the hypothesis was verified through hierarchical regression analysis. Results: The extremity of product reviews exhibited a negative impact on the evaluation of helpfulness. And the helpfulness played a mediating role between the extremity of product reviews and sales performance. Conclusion: Increased inclusion of extreme content in the product review's text correlates with a diminished evaluation of helpfulness. The evaluation of helpfulness exerts a negative mediating effect on sales performance. This study offers empirical insights for digital market distributors and sellers, contributing to the research field related to product reviews based on review ratings.

Frequency Matrix Based Summaries of Negative and Positive Reviews

  • Almuhannad Sulaiman Alorfi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2023
  • This paper discusses the use of sentiment analysis and text summarization techniques to extract valuable information from the large volume of user-generated content such as reviews, comments, and feedback on online platforms and social media. The paper highlights the effectiveness of sentiment analysis in identifying positive and negative reviews and the importance of summarizing such text to facilitate comprehension and convey essential findings to readers. The proposed work focuses on summarizing all positive and negative reviews to enhance product quality, and the performance of the generated summaries is measured using ROUGE scores. The results show promising outcomes for the developed methods in summarizing user-generated content.

Sentiment Analysis to Evaluate Different Deep Learning Approaches

  • Sheikh Muhammad Saqib ;Tariq Naeem
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.83-92
    • /
    • 2023
  • The majority of product users rely on the reviews that are posted on the appropriate website. Both users and the product's manufacturer could benefit from these reviews. Daily, thousands of reviews are submitted; how is it possible to read them all? Sentiment analysis has become a critical field of research as posting reviews become more and more common. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM, CNN, RNN, and GRU. Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. According to experimental results utilizing a publicly accessible dataset with reviews for all of the models, both positive and negative, and CNN, the best model for the dataset was identified in comparison to the other models, with an accuracy rate of 81%.

Cost-Benefit based User Review Selection Method

  • Neung-Hoe Kim;Man-Soo Hwang
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.177-181
    • /
    • 2023
  • User reviews posted in the application market show high relevance with the satisfaction of application users and its significance has been proven from numerous studies. User reviews are also crucial data as they are essential for improving applications after its release. However, as infinite amounts of user reviews are posted per day, application developers are unable to examine every user review and address them. Simply addressing the reviews in a chronological order will not be enough for an adequate user satisfaction given the limited resources of the developers. As such, the following research suggests a systematical method of analyzing user reviews with a cost-benefit analysis, in which the benefit of each user review is quantified based on the number of positive/negative words and the cost of each user review is quantified by using function point, a technique that measures software size.

Buyer's Evaluation and Emotional Experience Analysis on Digital Products by Using the Content Analysis of On-line Reviews (온라인 사용후기 내용분석을 통한 디지털 제품에 대한 구매자의 평가와 감성체험 분석)

  • Jung, Yun-Seon;Seo, Jeong-Hee;Huh, Eun-Jeong
    • Korean Journal of Human Ecology
    • /
    • v.18 no.5
    • /
    • pp.1063-1075
    • /
    • 2009
  • This study intends to provide foundational data for enhancing the welfare of customers purchasing digital products through analyzing the notes from written on-line reviews. The data used for the analysis are 6,342 on-line reviews for cell phones and digital cameras released from November, 2007 until April, 2008, which was posted on Naver Knowledge Shopping from November, 2007 until June, 2008. Through the on-line reviews, this article analyzed the evaluations on the digital products' hardware, software, design, service, price, and other criteria and the customers' emotional experience in the process of purchase, use, and possession. According to the results of the analysis, negative evaluation and emotional experience were originated from the company's information provision methods and purchase process. In addition, insufficient information searches in the process of online purchases, consumers' low right consciousness, and impolite on-line reviews were also problematic. Customers' evaluations and emotional experiences on digital products were conducted in a complex way. Based on that, this research makes suggestions in the company's marketing, customer education, and theoretical aspect.

Sentiment Analysis on 'HelloTalk' App Reviews Using NRC Emotion Lexicon and GoEmotions Dataset

  • Simay Akar;Yang Sok Kim;Mi Jin Noh
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.35-43
    • /
    • 2024
  • During the post-pandemic period, the interest in foreign language learning surged, leading to increased usage of language-learning apps. With the rising demand for these apps, analyzing app reviews becomes essential, as they provide valuable insights into user experiences and suggestions for improvement. This research focuses on extracting insights into users' opinions, sentiments, and overall satisfaction from reviews of HelloTalk, one of the most renowned language-learning apps. We employed topic modeling and emotion analysis approaches to analyze reviews collected from the Google Play Store. Several experiments were conducted to evaluate the performance of sentiment classification models with different settings. In addition, we identified dominant emotions and topics within the app reviews using feature importance analysis. The experimental results show that the Random Forest model with topics and emotions outperforms other approaches in accuracy, recall, and F1 score. The findings reveal that topics emphasizing language learning and community interactions, as well as the use of language learning tools and the learning experience, are prominent. Moreover, the emotions of 'admiration' and 'annoyance' emerge as significant factors across all models. This research highlights that incorporating emotion scores into the model and utilizing a broader range of emotion labels enhances model performance.

Topics and Sentiment Analysis Based on Reviews of Omni-Channel Retailing

  • KIM, Soon-Hong;YOO, Byong-Kook
    • Journal of Distribution Science
    • /
    • v.19 no.4
    • /
    • pp.25-35
    • /
    • 2021
  • Purpose: This study aims to analyze the factors affecting customer satisfaction in the customer reviews of omni-channel, posted on Internet blogs, cafes, and YouTube using text mining analysis. Research, data, and Methodology: In this study, frequency analysis is performed and the LDA (Latent Dirichlet Allocation) is used to analyze social big data to respond to reviewers' reaction to the recently opened omni-channel shopping reviews by L Shopping Company. Additionally, based on the topic analysis, we conduct a sentiment analysis on purchase reviews and analyze the characteristics of each topic on the positive or negative sentiments of omni-channel app users. Results: As a result of a topic analysis, four main topics are derived: delivery and events, economic value, recommendations and convenience, and product quality and brand awareness. The emotional analysis reveals that the reviewers have many positive evaluations for price policy and product promotion, but negative evaluations for app use, delivery, and product quality. Conclusions: Retailers can establish customized marketing strategies by identifying the customer's major interests through text mining analysis. Additionally, the analysis of sentiment by subject becomes an important indicator for developing products and services that customers want by identifying areas that satisfy customers and areas that evoke negative reactions.

Conveyed Message in YouTube Product Review Videos: The discrepancy between sponsored and non-sponsored product review videos

  • Kim, Do Hun;Suh, Ji Hae
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.29-50
    • /
    • 2023
  • Purpose The impact of online reviews is widely acknowledged, with extensive research focused on text-based reviews. However, there's a lack of research regarding reviews in video format. To address this gap, this study aims to explore the connection between company-sponsored product review videos and the extent of directive speech within them. This article analyzed viewer sentiments expressed in video comments based on the level of directive speech used by the presenter. Design/methodology/approach This study involved analyzing speech acts in review videos based on sponsorship and examining consumer reactions through sentiment analysis of comments. We used Speech Act theory to perform the analysis. Findings YouTubers who receive company sponsorship for review videos tend to employ more directive speech. Furthermore, this increased use of directive speech is associated with a higher occurrence of negative consumer comments. This study's outcomes are valuable for the realm of user-generated content and natural language processing, offering practical insights for YouTube marketing strategies.

A Sentiment Classification Approach of Sentences Clustering in Webcast Barrages

  • Li, Jun;Huang, Guimin;Zhou, Ya
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.718-732
    • /
    • 2020
  • Conducting sentiment analysis and opinion mining are challenging tasks in natural language processing. Many of the sentiment analysis and opinion mining applications focus on product reviews, social media reviews, forums and microblogs whose reviews are topic-similar and opinion-rich. In this paper, we try to analyze the sentiments of sentences from online webcast reviews that scroll across the screen, which we call live barrages. Contrary to social media comments or product reviews, the topics in live barrages are more fragmented, and there are plenty of invalid comments that we must remove in the preprocessing phase. To extract evaluative sentiment sentences, we proposed a novel approach that clusters the barrages from the same commenter to solve the problem of scattering the information for each barrage. The method developed in this paper contains two subtasks: in the data preprocessing phase, we cluster the sentences from the same commenter and remove unavailable sentences; and we use a semi-supervised machine learning approach, the naïve Bayes algorithm, to analyze the sentiment of the barrage. According to our experimental results, this method shows that it performs well in analyzing the sentiment of online webcast barrages.

A Study of Online Reviews Affecting Non-Face-to-Face Shopping

  • LYU, Moon Sang
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • Purpose: This study aims to investigate how the online review usefulness affect consumers' shopping behavior in non-face-to-face shopping, which is now very common format of shopping environment after COVID-19 pandemic. Factors influencing online reviews were determined as quantity of review, agreement of review and characteristic of review based on research by existing researchers. Research design, data, and methodology: Customers in their teens to 60s who had experience of checking online reviews and purchasing products were surveyed using a Google questionnaire form from January 15, 2022 to February 19, 2022. To verify the validity and reliability of the research model, confirmatory factor analysis and discriminant validity analysis were conducted. In addition, the causal relationship between factors was verified through path analysis. Results: As a result, quantity of review and agreement of review had a statistically significant effect on review usefulness. However, characteristic of review did not have a statistically significant influence on review usefulness. And review usefulness had a statistically significant effect on attitude and purchase intention. Conclusions: This study investigated the factors affecting usefulness of online reviews and empirically analyzed the effects of online reviews on consumer attitudes and purchase intentions providing practical and theoretical implications for corporate online review management.