• 제목/요약/키워드: Review filtering

검색결과 96건 처리시간 0.022초

Improving Accuracy of Noise Review Filtering for Places with Insufficient Training Data

  • Hyeon Gyu Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.19-27
    • /
    • 2023
  • 소셜 리뷰를 수집하는 과정에서 주어진 검색어와 상관없는 노이즈 리뷰가 검색 결과에 다수 포함될 수 있으며, 이들을 필터링하기 위해 기계 학습이 이용될 수 있다. 그러나 분석하고자 하는 대상의 리뷰 수가 부족한 경우, 학습 데이터 부족으로 인한 정확도 저하 문제가 발생할 수 있다. 본 논문에서는 리뷰 수가 부족한 플레이스를 대상으로 노이즈 리뷰 필터링의 정확도를 높이기 위한 지도 학습 방법을 소개한다. 제안 방법에서는 개별 플레이스 단위로 학습을 수행하지 않고, 특성이 유사한 여러 플레이스를 그룹으로 묶어 학습을 수행한다. 학습을 통해 얻은 분류기는 그룹에 속한 임의의 플레이스에 공통으로 적용함으로써 학습 데이터 부족 문제를 해결하고자 하였다. 제안 방법의 검증을 위해, LSTM과 BERT를 이용하여 노이즈 리뷰 필터링 모델을 구현하고, 온라인에서 수집된 실제 데이터를 활용한 실험을 통해 필터링 정확도를 체크하였다. 실험 결과, 제안 방법의 정확도는 평균 92.4% 수준이었으며, 리뷰 수가 100개 미만인 플레이스를 대상으로 할 경우 87.5%의 정확도를 제공하였다.

비선형 상태공간 모델을 위한 Point-Mass Filter 연구 (A Study on the Point-Mass Filter for Nonlinear State-Space Models)

  • 최영권
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.259-266
    • /
    • 2023
  • 본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.

Social Big Data Analysis for Franchise Stores

  • Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.39-46
    • /
    • 2021
  • 프랜차이즈 스토어를 대상으로 소셜 빅데이터 분석을 수행할 경우, 프랜차이즈에 속한 여러 분점의 리뷰들이 함께 수집될 수 있어 분석 결과가 왜곡될 수 있다. 이 경우 분석 정확도를 높이기 위해서는 분석 대상이 아닌 타 분점의 리뷰들을 적절히 필터링할 수 있어야 한다. 본 논문에서는 프랜차이즈 스토어들의 특성을 반영한 소셜 빅데이터 분석 방법을 제안한다. 제안 방법은 검색어 설정 방법과 리뷰 필터링 방법을 포함한다. 검색어 설정을 위해, 소상공인진흥공단에서 제공하는 공공데이터를 기반으로 검색에 필요한 지역명을 추출한다. 그리고 리뷰 필터링을 위해, 네이버 및 카카오 등에서 제공하는 검색 API를 이용하여 프랜차이즈 분점 정보를 알아내고, 분석 대상이 아닌 타 분점의 리뷰들을 필터링하는데 이용한다. 제안 방법의 검증을 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법의 리뷰 필터링 정확도는 평균 93.6%로 조사되었다.

보건의료종사자의 안면부여과식 마스크의 사용과 밀착도검사의 중요성 (Usage of Filtering-facepiece Masks for Healthcare Workers and Importance of Fit Testing)

  • 한돈희
    • 한국산업보건학회지
    • /
    • 제25권3호
    • /
    • pp.245-253
    • /
    • 2015
  • Objectives: One aim of the study is to compare filtering facepiece masks for healthcare workers between Korea and other countries. The other is to emphasize the importance of fit testing for these masks using an analysis of previous research. Materials: An extensive literature review was performed by searching a number of websites and existing studies. Results: KF94 and KF99 masks certified by the Korean CDC are suitable for healthcare workers as filtering facepiece masks. The standards for these respirators are similar to FFP2 and FFP3 of EN 143 and 149. The performance, such as filtering efficiency, is almost the same between KP94 and N95. It was found that fit testing of respirators for healthcare workers was important to reduce infection risk. Conclusions: KF94 should be emphasized as filtering facepiece masks for healthcare workers rather than N95. Even though Korea has no fit testing regulations, implementing fit testing in healthcare settings is strongly recommended to decrease infection risk.

<종설>국내 시판 방진마스크는 나노입자에 적합한가? (Are Particulate Filtering Respirators Available in Korea Efficient for Nanoparticles?)

  • 한돈희
    • 한국산업보건학회지
    • /
    • 제21권1호
    • /
    • pp.62-71
    • /
    • 2011
  • There is widespread concern that particulate filtering respirators (PFRs) available in Korea will be efficient for nanoparticles. The purpose of this review study was to analyse research literature and recommend PFRs suitable for protection against nanoparticles. In all studies, respirators containing electret filter media (N95, P100 and FFP2, FFP3) consistently have their MPPS below 100 nm and particle penetration levels at the MPPS can vary widely, but they comply with NIOSH or EN certification criterion. Electret filtering facepieces respirators (FFRs) were found to shift in the Most-Penetrating Particle Size(MPPS) from 30-60 to 200-300 nm range after the electric charges were removed, and FFRs were above their minimum penetrations of criterion. Korean special class and first class FFRs (the same as FFP3 and FFP2, respectively) would be effcient for nanoparticles unless FFRs are removed electric charges. It is difficult to evaluate if mechanical PFRs is efficient for nanoparticles due to the lack of related materials.

위치기반 서비스 강화를 위한 최적 데이터 필터링 기법 및 측위 시스템 적용 모델 (Optimal Fingerprint Data Filtering Model for Location Based Services)

  • 정준;김재훈
    • 경영과학
    • /
    • 제29권2호
    • /
    • pp.79-90
    • /
    • 2012
  • Focusing on the rapid market penetration of smart phones, the importance of LBS (Location Based Service) is drastically increased. However, traditional GPS method has critical weakness caused by limited availability, such as indoor environment. WPS is newly attractive method as a widely applicable positioning method. In WPS, RSSI (Received Signal Strength Indication) data of all Wi-Fi APs (Access Point) are measured and stored into a huge database. The stored RSSI data in database make single radio fingerprint map. By the radio fingerprint map, we can estimate the actual position of target point. The essential factor of radio fingerprint database is data integrity of RSSI. Because of millions of APs in urban area, RSSI measurement data are seriously contaminated. Therefore, we present the unified filtering method for RSSI measurement data. As the results of filtering, we can show the effectiveness of suggested method in practical positioning system of mobile operator.

평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구 (How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores)

  • 현지연;유상이;이상용
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.219-239
    • /
    • 2019
  • 개인에게 맞춤형 서비스를 제공하는 것이 중요해지면서 개인화 추천 시스템 관련 연구들이 끊임없이 이루어지고 있다. 추천 시스템 중 협업 필터링은 학계 및 산업계에서 가장 많이 사용되고 있다. 다만 사용자들의 평점 혹은 사용 여부와 같은 정량적인 정보에 국한하여 추천이 이루어져 정확도가 떨어진다는 문제가 제기되고 있다. 이와 같은 문제를 해결하기 위해 현재까지 많은 연구에서 정량적 정보 외에 다른 정보들을 활용하여 추천 시스템의 성능을 개선하려는 시도가 활발하게 이루어지고 있다. 리뷰를 이용한 감성 분석이 대표적이지만, 기존의 연구에서는 감성 분석의 결과를 추천 시스템에 직접적으로 반영하지 못한다는 한계가 있다. 이에 본 연구는 리뷰에 나타난 감성을 수치화하여 평점에 반영하는 것을 목표로 한다. 즉, 사용자가 직접 작성한 리뷰를 감성 수치화하여 정량적인 정보로 변환해 추천 시스템에 직접 반영할 수 있는 새로운 알고리즘을 제안한다. 이를 위해서는 정성적인 정보인 사용자들의 리뷰를 정량화 시켜야 하므로, 본 연구에서는 텍스트 마이닝의 감성 분석 기법을 통해 감성 수치를 산출하였다. 데이터는 영화 리뷰를 대상으로 하여 도메인 맞춤형 감성 사전을 구축하고, 이를 기반으로 리뷰의 감성점수를 산출한다. 본 논문에서 사용자 리뷰의 감성 수치를 반영한 협업 필터링이 평점만을 고려하는 전통적인 방식의 협업 필터링과 비교하여 우수한 정확도를 나타내는 것을 확인하였다. 이후 제안된 모델이 더 개선된 방식이라고 할 근거를 확보하기 위해 paired t-test 검증을 시도했고, 제안된 모델이 더 우수하다는 결론을 도출하였다. 본 연구에서는 평점만으로 사용자의 감성을 판단한 기존의 선행연구들이 가지는 한계를 극복하고자 리뷰를 수치화하여 기존의 평점 시스템보다 사용자의 의견을 더 정교하게 추천 시스템에 반영시켜 정확도를 향상시켰다. 이를 기반으로 추가적으로 다양한 분석을 시행한다면 추천의 정확도가 더 높아질 것으로 기대된다.

리뷰 데이터 마이닝을 이용한 하이브리드 추천시스템 개발: Amazon Kindle Store 데이터 분석사례 (Development of Hybrid Recommender System Using Review Data Mining: Kindle Store Data Analysis Case)

  • 장예화;이청용;최일영;김재경
    • 경영정보학연구
    • /
    • 제23권1호
    • /
    • pp.155-172
    • /
    • 2021
  • 최근 온라인 상품 구매의 증가로 인해 사용자의 선호에 맞는 상품을 추천해주는 시스템이 지속적으로 연구되고 있다. 추천 시스템은 사용자들에게 개인화된 상품 추천 서비스를 제공하는 시스템으로 사용자가 상품에 남긴 평점을 이용한 협업 필터링(Collaborative Filtering)이 가장 널리 쓰이는 추천 방법이다. 협업 필터링에서 상품 간의 유사도 계산은 시간이 많이 소요되는데, 특히 리뷰 데이터와 같은 빅데이터를 사용할 경우 더욱 많은 시간을 소요한다. 그래서 본 연구에서는 리뷰 데이터 마이닝을 이용하여 상품 간의 유사도 계산을 빠르게 수행할 수 있으면서 정확도를 높일 있도록 2단계(2-Phase) 방법을 이용한 하이브리드 추천시스템 방식을 제안한다. 이를 위해 온라인 전자책 상거래 상점인 아마존 킨들 스토어(Amazon Kindle Store)의 약 98만 개의 온라인 소비자 평점과 리뷰 데이터를 수집하였다. 실험 결과 본 연구에서 제안한 사용자의 평점과 리뷰를 단계적으로 반영한 하이브리드 추천 방식이 전통적인 추천 방식과 비교하여 추천 시간은 비슷하였으나 높은 정확도를 나타내는 것을 확인하였다. 따라서 제안한 방법을 사용하면 사용자가 선호하는 상품을 빠르고 정확하게 추천함으로써 고객의 만족을 높여서 기업의 매출 증대에 기여할수 있을 것으로 기대된다.

상황기반과 협업 필터링 기법을 이용한 개인화 영화 추천 시스템 (Personalized Movie Recommendation System Using Context-Aware Collaborative Filtering Technique)

  • 김민정;박두순;홍민;이화민
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권9호
    • /
    • pp.289-296
    • /
    • 2015
  • 정보의 폭발적인 증가로 사용자들은 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 따라서 이 문제를 해결하기 위한 다양한 방식의 새로운 서비스들이 제공되고 있다. 개인에게 맞는 맞춤 서비스를 제공하는 것이 중요하게 부각되면서 개인화 추천 시스템이 매우 중요하게 되었다. 추천 시스템 중 협업 필터링은 추천 시스템에서 널리 사용되고 있고 개인화 추천 시스템 중에서 가장 성공적인 방법이다. 협업 필터링 방법은 고객들의 프로파일 정보를 기반으로 추천을 하므로 희박성 문제와 cold-start 문제가 있다. 본 논문에서는 개인에게 더 정확하게 추천하기 위해 협업 필터링 기법과 상황기반 기법을 함께 이용하는 방법을 제안한다. 상황기반 기법은 사용자를 둘러싼 시간, 감정, 장소 등과 같은 환경을 고려하여 사용자에게 맞는 아이템을 추천하는 방법으로 상황에 따라 달라지는 사용자의 선호도를 반영할 수 있다. 본 논문에서는 상황기반 기법을 활용하기 위해 상황정보로 감정을 이용하며 이를 위해 개인의 주관적인 정보를 파악하는 데 효과적인 영화 리뷰를 이용한다. 본 논문에서 제안한 방법은 기존의 협업 필터링 방법보다 성능평가 결과, 향상된 성능을 보였다.