• Title/Summary/Keyword: Reversible capacity

Search Result 214, Processing Time 0.024 seconds

A Design Problem of a Two-Stage Cyclic Queueing Network (두 단계로 구성된 순환대기네트워크의 설계)

  • Kim Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • In this paper we consider a design problem of a cyclic queueing network with two stages, each with a local buffer of limited capacity. Based on the theory of reversibility and product-form solution, we derive the throughput function of the network as a key performance measure to maximize. Two cases are considered. In case each stage consists of a single server, an optimal allocation policy of a given buffer capacity and work load between stages as well as the optimal number of customers is identified by exploiting the properties of the throughput function. In case each stage consists of multiple servers, the optimal policy developed for the single server case doesn't hold any more and an algorithm is developed to allocate with a small number of computations a given number of servers, buffer capacity as well as total work load and the total number of customers. The differences of the optimal policies between two cases and the implications of the results are also discussed. The results can be applied to support the design of certain manufacturing and computer/communication systems.

Improvement of Electrochemical Performance of KVO3 as High Capacity Negative Electrode Material for Lithium-ion Batteries (리튬이온 이차전지용 고용량 KVO3 음극의 전기화학적 성능개선)

  • Kim, Tae Hun;Gim, Gyeong Rae;Park, Hwandong;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.148-154
    • /
    • 2019
  • Vanadium oxide based materials have been studied as novel negative electrode materials in lithium-ion batteries (LIBs) because of their high specific capacity. In this study, potassium metavanadate ($KVO_3$) was synthesized and its electrochemical properties are evaluated as a negative electrode materials. The aqueous solution of $NH_4VO_3$ is mixed with a stoichiometric amount of KOH. The solution is boiled to remove $NH_3$ gas and dried to obtain a precipitate. The obtained $KVO_3$ powders are heat-treated at 300 and $500^{\circ}C$ for 8 h in air. As the heat treatment temperature increases, the initial reversible capacity decreases, but the cycle performance and Coulombic efficiency are improved slightly. On the contrary, the electrochemical performances of the $KVO_3$ electrodes are greatly improved when a polyacrylic acid (PAA) as binder was used instead of polyvinylidene fluoride (PVDF) and a fluoroethylene carbonate (FEC) was used as electrolyte additive. The initial reversible capacity of the $KVO_3$ is 1169 mAh/g and the Coulombic efficiency is improved to 76.3% with moderate cycle performance. The $KVO_3$ has the potential as a novel high-capacity negative electrode materials.

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

The Research on the Nanoparticles Prepared by Arc-Discharge Method as Anode Materials for Lithium Ion Batteries (아크방전으로 제조된 나노입자를 이용한 리튬이온전지 음극재료의 연구)

  • Kim, Hyeong-Jo;Tulugan, Kelimu;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2013
  • Tin and Tinoxide nanoparticles were prepared by arc-discharge nanopowder process. The negative electrode were fabricated using Tin and Tinoxide nanopower. The microstructure and electrochemistry properties were investigated and compared between Tin and Tinoxide. The oxidation film has microstructure of core/shell type and the shell which was attached around Tin nanoparticle consisted of amorphous $SnO_2$. The shape of Tinoxide nanoparticles was formed with irregular shape in comparison with Tin particle. Initial discharge capcity of Tinoxide electrode possesed about 1000mAh/g, which is about 320mAh/g higher than Tin electrode. Irreversible capacity of Tin electrode is much higher than Tinoxide. The cycle performance of Tinoxide electrode was indicated that is batter than Tin. The Tin negative electrode lost most of capacity after 4 cycle but Tinoxide electrode still retained the capacity. The Tinoxide does show some promise as Li-ion battery anode due to their large reversible capacity at low potentials.

High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery (리튬이온이차전지용 고효율 음극(SiO-Graphite))

  • Shin, Hye-Min;Doh, Chil-Hoon;Kim, Dong-Hun;Kim, Hyo-Seok;Ha, Kyung-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A new anode composition material comprising of SiO and Graphite has been prepared by adopting High energy ball milling (HEBM) technique. The anode material shows high initial charge and discharge capacity values of 1139 and 568 mAh/g, respectively. The electrode sustains reversible discharge capacity value of 719 mAh/g at 30th cycle with a high coulombic efficiency${\sim}99%$. Since the materials formed during initial charge process the nano silicon/$Li_4SiO_3$ and $Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversibility$(Li_2O)$ will deliver higher reversible capacity. In this study, constant current-constant voltage (CC-CV) charge method was employed in place of usual constant current (CC) method in order to convert efficiently all the SiO particles which resulted high initial discharge capacity at the first cycle. We improved considerably the initial discharge specific capacity of SiO/G composite by pretreatment(CC-CV).

Reversible Data Hiding Method Based on Min/Max in 2×2 Sub-blocks (2×2 서브블록에서 최소/최대값을 이용한 가역 정보은닉기법 연구)

  • Kim, Woo-Jin;Kim, Pyung-Han;Lee, Joon-Ho;Jung, Ki-Hyun;Yoo, Kee-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • A novel reversible data hiding method using pixel value ordering and prediction error expansion in the sub-block is resented in this paper. For each non-overlapping $2{\times}2$ sub-block, we divide into two groups. In the min group, the lowest value is changed to embed a secret bit and the highest value is changed in the max group. The experimental results show that the proposed method achieves a good visual quality and high capacity. The proposed method can embed 13,900 bits on average, it is higher 4,553 bits than the previous method and the visual quality is maintained 31.39dB on average.

Least Square Prediction Error Expansion Based Reversible Watermarking for DNA Sequence (최소자승 예측오차 확장 기반 가역성 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.66-78
    • /
    • 2015
  • With the development of bio computing technology, DNA watermarking to do as a medium of DNA information has been researched in the latest time. However, DNA information is very important in biologic function unlikely multimedia data. Therefore, the reversible DNA watermarking is required for the host DNA information to be perfectively recovered. This paper presents a reversible DNA watermarking using least square based prediction error expansion for noncodng DNA sequence. Our method has three features. The first thing is to encode the character string (A,T,C,G) of nucleotide bases in noncoding region to integer code values by grouping n nucleotide bases. The second thing is to expand the prediction error based on least square (LS) as much as the expandable bits. The last thing is to prevent the false start codon using the comparison searching of adjacent watermarked code values. Experimental results verified that our method has more high embedding capacity than conventional methods and mean prediction method and also makes the prevention of false start codon and the preservation of amino acids.

Changing Partners Technique in Reversible Steganography

  • Woo, Jae-Hyeon;Cho, Weon-Jin
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.6 no.3
    • /
    • pp.25-34
    • /
    • 2007
  • Steganography is hiding messages in cover materials like image, audio, etc. The previous studies are limited in the shifting problem of the histogram and capacity. This paper proposes a new technology which overcomes these two problems. Our new technology uses two colors as a pair and chooses either changing to its partner or remaining as they are according as each hiding bit. As a result, we show that the result of this technology shows that the hiding capacity is higher than other methods.

  • PDF

New Iron-Containing Electrode Materials for Lithium Secondary Batteries

  • Hong, Young-Sik;Ryu, Kwang-Sun;Chang, Soon-Ho
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.412-417
    • /
    • 2003
  • Using a galvanostatic charge/discharge cycler and cyclic voltammetry, we investigated for the first time the electrochemical properties of iron-containing minerals, such as chalcophanite, diadochite, schwertmannite, laihuite, and tinticite, as electrode materials for lithium secondary batteries. Lithium insertion into the mineral diadochite showed a first discharge capacity of about 126 mAh/g at an average voltage of 3.0 V vs. $Li/Li^+$, accompanied by a reversible capacity of 110 mAh/g at the 60th cycle. When the cutoff potential was down to 1.25 V, the iron was further reduced, giving rise to a new plateau at 1.3 V. Although the others showed discharge plateaus at low potentials of less than 1.6 V, these results give an important clue for the development of new electrode materials.

  • PDF

Multi-Functional Dual-Layer Polymer Electrolytes for Lithium Metal Polymer Batteries

  • Lee, Young-Gi;Ryu, Kwang-Sun;Chang, Soon-Ho
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.285-291
    • /
    • 2004
  • We prepared a novel multi-functional dual-layer polymer electrolyte by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate $(LiPF_6)$ solution. The first layer, based on a microporous polyethylene, is incompatible with a liquid electrolyte, and the second layer, based on poly (vinylidenefluoride-co-hexafluoropropylene), is submicroporous and compatible with an electrolyte solution. The maximum ionic conductivity is $7{\times}10^{-3}S/cm$ at ambient temperature. A unit cell using the optimum polymer electrolyte showed a reversible capacity of 198 mAh/g at the 500th cycle, which was about 87% of the initial value.

  • PDF