DOI QR코드

DOI QR Code

Improvement of Electrochemical Performance of KVO3 as High Capacity Negative Electrode Material for Lithium-ion Batteries

리튬이온 이차전지용 고용량 KVO3 음극의 전기화학적 성능개선

  • Kim, Tae Hun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Gim, Gyeong Rae (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Park, Hwandong (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kim, Haebeen (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
  • 김태훈 (한국산업기술대학교생명화학공학과) ;
  • 김경래 (한국산업기술대학교생명화학공학과) ;
  • 박환동 (한국산업기술대학교생명화학공학과) ;
  • 김해빈 (한국산업기술대학교지식기반기술.에너지대학원) ;
  • 류지헌 (한국산업기술대학교지식기반기술.에너지대학원)
  • Received : 2019.10.04
  • Accepted : 2019.11.13
  • Published : 2019.11.30

Abstract

Vanadium oxide based materials have been studied as novel negative electrode materials in lithium-ion batteries (LIBs) because of their high specific capacity. In this study, potassium metavanadate ($KVO_3$) was synthesized and its electrochemical properties are evaluated as a negative electrode materials. The aqueous solution of $NH_4VO_3$ is mixed with a stoichiometric amount of KOH. The solution is boiled to remove $NH_3$ gas and dried to obtain a precipitate. The obtained $KVO_3$ powders are heat-treated at 300 and $500^{\circ}C$ for 8 h in air. As the heat treatment temperature increases, the initial reversible capacity decreases, but the cycle performance and Coulombic efficiency are improved slightly. On the contrary, the electrochemical performances of the $KVO_3$ electrodes are greatly improved when a polyacrylic acid (PAA) as binder was used instead of polyvinylidene fluoride (PVDF) and a fluoroethylene carbonate (FEC) was used as electrolyte additive. The initial reversible capacity of the $KVO_3$ is 1169 mAh/g and the Coulombic efficiency is improved to 76.3% with moderate cycle performance. The $KVO_3$ has the potential as a novel high-capacity negative electrode materials.

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, 'Research on Advanced Materials for Li-ion Batteries', Adv. Mater., 21, 4593 (2009). https://doi.org/10.1002/adma.200901710
  2. M. N. Obrovac and V. L. Chevrier, 'Alloy Negative Electrodes for Li-Ion Batteries', Chem. Rev., 114, 11444 (2014). https://doi.org/10.1021/cr500207g
  3. J. S. Kim, N. Umirov, H.-Y. Kim, S.-S. Kim, 'Fundamental Approach to Capacity Prediction of Si- Alloys as Anode Material for Li-ion Batteries', J. Electrochem. Sci. Technol, 9, 51 (2018). https://doi.org/10.33961/JECST.2018.9.1.51
  4. M. Endo , C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, 'Recent development of carbon materials for Li ion batteries', Carbon 2000, 38, 183 (1999).
  5. J. M. Tarascon and M. Armand, 'Issues and challenges facing rechargeable lithium batteries', Nature. 414, 359 (2001). https://doi.org/10.1038/35104644
  6. X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, 'Silicon based lithium-ion battery anodes: A chronicle perspective review', Nano Energy, 31, 113 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
  7. J. Li, R. B. Lewis, and J. R. Dahn, 'Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries', Electrochem. Solid-State Lett., 10, A17 (2007). https://doi.org/10.1149/1.2398725
  8. Z. Karkar, D. Guyomard, L. Roue, and B. Lestriez, 'A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes', Electrochim. Acta, 258, 453 (2017). https://doi.org/10.1016/j.electacta.2017.11.082
  9. S.-M. Kim, B. Lee, J. G. Lee, J. B. Lee, J. H. Ryu, H.-T. Kim, Y. G. Kim, and S. M. Oh, 'Poly(phenanthrenequinone)- Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes', J. Kor. Electrochem. Soc., 19, 87 (2016). https://doi.org/10.5229/JKES.2016.19.3.87
  10. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, 'Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries', Nature. 407, 496 (2000). https://doi.org/10.1038/35035045
  11. Y. Lu, L. Yu, and X. W. Lou, 'Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries', Chem, 4, 972 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
  12. S. Ni, J. Liu, D. Chao, and L. Mai, 'Vanadate-Based Materials for Li-Ion Batteries: The Search: for Anodes for Practical Applications', Adv. Mater., 9, 14,1 (2019).
  13. J. B. Lee, O. B. Chae, S. Chae, J. H. Ryu, and S. M. Oh, 'Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries', J. Electrochem. Sci. Technol, 7, 306 (2016). https://doi.org/10.33961/JECST.2016.7.4.306
  14. J.-N. Lee, 'Effect of Electrolyte Additive on the Electrochemical Characteristics of Lithium Vanadium Oxide Anode', J. Kor. Electrochem. Soc., 21, 55 (2018).
  15. J. H. Song, H. J. Park. K. J. Kim, Y. N. Jo, J.-S. Kim, Y. U. Jeong, and Y. J. Kim, 'Electrochemical characteristics of lithium vanadate, $Li_{1+x}VO_2$, new anode materials for lithium ion batteries', J. Power Sources, 195, 6157 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.103
  16. H. Li, X. Liu, T. Zhai, D. Li, and H. Zhou, '$Li_3VO_4$: A Promising Insertion Anode Material for Lithium?Ion Batteries', Adv. Energy Mater., 3, 428 (2013). https://doi.org/10.1002/aenm.201200833
  17. J. B. Lee, J. Moon, O. B. Chae, J. G. Lee, J. H. Ryu, M. Cho, K. Cho, and S. M. Oh, 'Unusual Conversion-type Lithiation in $LiVO_3$ Electrode for Lithium-Ion Batteries', Chem. Mater., 28, 5314 (2016). https://doi.org/10.1021/acs.chemmater.6b01053
  18. O. B. Chae, J. Kim, I. Park, H. Jeong, J. H. Ku, J. H. Ryu, K. Kang, and S. M. Oh, 'Reversible Lithium Storage at Highly Populated Vacant Sites in an Amorphous Vanadium Pentoxide Electrode', Chem. Mater., 26, 5874 (2014). https://doi.org/10.1021/cm502268u
  19. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid', ACS Appl. Mater. Interfaces, 2, 3004 (2010). https://doi.org/10.1021/am100871y
  20. P. Parikh, M. Sina, A. Banerjee, X. Wang, M. S. D'Souza, J.-M. Doux, E. A. Wu, O. Y. Trieu, Y. Gong, Q. Zhou, K. Snyder, and Y. S. Meng, 'Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes', Chem. Mater., 31, 2535 (2019). https://doi.org/10.1021/acs.chemmater.8b05020
  21. A. M. Haregewoin, A. S. Wotango, and B.-J. Hwang, 'Electrolyte additives for lithium ion battery electrodes: progress and perspectives', Energy Environ. Sci., 9, 1955 (2016). https://doi.org/10.1039/C6EE00123H
  22. H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, and Y. Deng, 'Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook', J. Mater. Chem. A, 7, 8700 (2019). https://doi.org/10.1039/C9TA00126C
  23. A. Ponrouch, P.-L. Taberna, P. Simon, and M. R. Palacin, 'On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction', J. Power Sources, 61, 13 (2012).
  24. Y.-Y. Hu, Z. Liu, K.-W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L.-S. Du, K. W. Chapman, P. J. Chupas, X.-Q. Yang, and C. P. Grey, 'Origin of additional capacities in metal oxide lithium-ion battery electrodes', Nature Mater., 12, 1130 (2013). https://doi.org/10.1038/nmat3784