• Title/Summary/Keyword: Reverse excavation

Search Result 11, Processing Time 0.023 seconds

A Study on the Excavation of Tunnel Portal Zone Located at High Steep Slope (급경사 지형에 위치하고 있는 갱구부의 굴착 방안 연구)

  • Kim, Woo-Sung;Lee, Sang-Eun
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • Recently, planning road construction in South Korea is focused on upgrading of the existing road by rerouting or restructuring. For this, roads under current construction in Korea go for more straight in its alignments and routing. Straight routing makes it all the more required to construct many mountain tunnels and bridges in Korea where mountains are so widely spread. Some portal of mountain tunnel is not rarely planed at high steep slope of mountain valley where it is not easy to secure working space for tunnel excavation. Reverse excavation is an alternative measure for excavation of tunnel portal at high steep slope. Construction in reverse excavation method has three important points requiring careful consideration: 1)planning of pilot tunnel in proper width, height, and length etc., 2)measure against the effect of one-side earth pressure to the direction of tunnel portal, 3)securing tunnel safety against shallow ground condition at portal zone. This paper intends to suggest applicable range of pilot tunnel for reverse excavation at the portal zone located at high steep slope, and shows result of study on the appropriateness of a reverse excavation by means of 3D numerical analysis. Result of 3D numerical analysis for reverse excavation at high steep slope shows that pilot tunneling will be applicable to start from the point $20{\sim}25m$ before the portal from inside the tunnel.

Analysis and Countermeasures for the Trouble Factors of the Spot Installation Pile Using Machine Excavation Method (기계굴착공법을 적용한 현장타설말뚝 시공시 부조화 발생요인 분석 및 대응 방안)

  • Park, Hong-Tae;Son, Chang-Baek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.75-83
    • /
    • 2009
  • Although a range of machine excavation methods are in wide use, including casing, earth drill and reverse circulation drilling, deterioration in pile quality and faulty construction can be often found these days because of trouble in the construction field. For this study, research was conducted in the form of a survey of construction engineers working in the field in order to identify the types and the causes of trouble by focusing on all casing, earth drilling and reverse circulation drilling. By analyzing the causes of trouble, countermeasures could be presented. The data and the analysts presented in this study could be effectively used for minimizing trouble in future machine excavation work during construction.

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

A Study on the Conservation of Excavated Features (발굴유구의 보존방법과 적용)

  • An, Jin Hwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.26-47
    • /
    • 2010
  • When the term conservation is used with regard to excavated features, it means not only conservation but also restoration. Restoring the features here does not imply restoring their original form but restoring their form at the moment of excavation. That means, the conservation of excavated features includes the concept of both reparation and restoration. The way of conserving excavated features can be largely categorized into on-site conservation and transfer conservation. On-site conservation means to conserve excavated features as they were at the excavation site. It can be further categorized into soil-covered on-site conservation, in which excavated features are covered with soil to prevent them from being damaged, and exposed on-site conservation in which the features were conserved as they were exposed. Transfer conservation is operated on the premise that excavated features are transferred to another place. It can be further categorized into original form transfer, transcribing transfer, reproduction transfer, and dismantlement transfer. Original form transfer refers to the method of moving the original forms of excavated features to another place. Transcribing transfer refers to moving some of the surfaces of excavated features to another place. Reproduction transfer refers to restoring the forms of excavated features in another place after copying the forms of excavated features at the excavation site. Dismantlement transfer refers to the method of restoring excavated features in a place other than the excavation site in the reverse order of dismantlement after dismantling the features at the excavation site. The most fundamental issue regarding conserving excavated features is the conservation of their original forms. However, the conservation of excavated features tends to be decided depending on a variety of conditions such as society, economy, culture, and local situations. In order to conserve excavated features more effectively, more detailed and specialized conservation methods should be created. Furthermore, continuing research is needed to find the most effective way of conserving them through exchange with other neighboring academic fields and scientific technology.

On-site Treatments and Conservation of Ox Bones Excavated from Bogam - ri tumulus, Naju (나주 복암리 고분군 출토 소뼈의 수습 및 보존처리)

  • Lee, Jung-Min;Park, Young-Hwan;Youn, Hye-seong;Ham, Chul-Hee;Kwon, Hyuk-nam
    • 보존과학연구
    • /
    • s.36
    • /
    • pp.74-85
    • /
    • 2015
  • An ox bone object was excavated from the wetland at the excavation site in Bogam-ri tumulus, Naju. It was only able to identify the full image of the shape. Bogam were deteriorated and cracked due to the soil pressure and the repeated cycle of freezing and melting. They were also fragmented in pieces and powdered. In situ, bones were dewatered, consolidated and wrapped together with surrounding soils not to lose the fragmented bone pieces. Unpacking was carried out in the conservation lab and the treatment was processed. Soils on the reverse were removed and then the surface was consolidated and reinforced. Then, soils on the excavated side was cleaned and the surface was consolidated. The object was placed in the produced storing box. When the ox bone object was excavated, it did not have its head and was in the shape of tieing all its legs up. This shows that the animal had been tied up during a ritual and then buried. During the treatment, the importance of the burial purpose and maintaining the shape at the time of excavation was considered. Therefore, the shape of the object at the time of excavation was maintained rather than dismantling all these fragile bones and finding the shape of an ox. This conservation of ox bone object shows that conservation treatment methods have to be vary depending on characters and conditions of objects. In addition, it is expecting that this writing could be the reference to bone and horn objects excavated in the future for the whole process from the excavation to the conservation treatment.

  • PDF

Trench Survey and Fault Displacement at Cheonbuk-myon Area along the Northern Part of Ulsan Fault System (울산단층계 북부 천북면 일대의 트렌치 조사와 단층변위)

  • 경재복
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.235-240
    • /
    • 1998
  • Quaternary fault movement of the Ulsan fault system was interpreted by aenal photograph, field survey and trench excavation. The geomorphological evidences associated with active fault are clearly shown at Cheonbuk-myeon area, northern part of Ulsan fault system. In the trench wall one reverse fault(N 50$^{\circ}$E, 70$^{\circ}$E) is identified between basement rock (Miocene mudstone) and gravel deposits Another thrust fault (NS) extends up to the red and light brown soil layers. Middle terrace surface shows cumulative vertical displacements of about 3 to 7 m. The horizontai displacement of the red soil by faulting event is about 1.8 to 2.4m. The age of the fault activity is younger than that of the soil layer, which is roughly estimated to be late Quaternary (about 100Ka)

  • PDF

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

A Study on the Method of Calculating the Deformation Coefficient According to the Horizontal Subgrade Reaction Modulus and Cohesion (수평지반반력계수와 점착력에 따른 지반변형계수 산정방법 연구)

  • Sungjae Jeon;Daeseock Jung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.31-43
    • /
    • 2023
  • Purpose: In this study, an analysis of the differences between the elastoplastic analysis and the numerical analysis and a study of the design ground constant recalculation method to derive similar trends in the analysis results were conducted. Method: The relational expression between the ground reaction force coefficient and the ground deformation coefficient at the time when the wall displacement becomes the same according to shallow excavation and deep excavation was derived. Result: Based on the measurement results, reverse analysis was performed to re-calculate the ground properties suitable for the site ground, and as a result of comparing and verifying the wall displacement using the derived formula and the literature formula, the proposed formula showed the most similar value. Conclusion: If the proposed formula is used, it will be helpful in practice because it is possible to infer the most similar ground properties to the actual at the time of design.

Simulation Analysis for the Development of 3 Stage IMV (양방향 3단 IMV 개발을 위한 시뮬레이션 해석)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

A Study on behavior of Slope Failure Using Field Excavation Experiment (현장 굴착 실험을 통한 사면붕괴 거동 연구)

  • Park, Sung-Yong;Jung, Hee-Don;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.