• Title/Summary/Keyword: Reverse Osmosis Plant

Search Result 67, Processing Time 0.019 seconds

Pilot-Scale Simulation of Desalination Process Using Water Integrated Forward Osmosis System (물통합형 정삼투 시스템을 이용한 파일럿 스케일 담수 공정 모사)

  • Kim, Bongchul;Hong, Seungkwan;Choi, Juneseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • In these days, wastewater reclamation and seawater desalination play essential role in addressing the challenge of worldwide water scarcity. Particularly, reverse osmosis (RO) for seawater desalination process is commonly used due to less energy consumption than conventional thermodynamic systems. However, membrane fouling and electrical energy consumption during operation of RO system for seawater desalination haver continued to be a obstruction to its application. In this study, therefore, wastewater secondary effluent is used for osmotic dilution of seawater. Firstly, fouling behaviour of RO by simulating wastewater effluent in osmotic dilution process was measured and we calculated energy consumption of overall desalination process by theoretical equations and commercial program. Our results reveal that RO membrane fouling can be efficiently controlled by pre-treatment systems such as nano filtration (NF) or forward osmosis (FO) process. Especially FO system for osmotic dilution process is a non-pressurized membrane system and, therefore, the operating energy consumption of overall desalination system was the lowest. Moreover, fouling layer on FO membrane is comparatively weak and reversible enough to be disrupted by physical cleaning. Thus, RO system with low salinity feed water through FO process is possible as a less energy consuming desalination system with efficient membrane fouling control.

Development of Eco-friendly Cement using Reverse Osmosis Brine Water and Metakaolin (역삼투압 농축수와 메타카올린을 사용한 친환경 시멘트의 개발)

  • Kim, Taewan;Han, Ki-Bong;Kim, Do-Hyung;Seo, Ki-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.216-222
    • /
    • 2021
  • This is an experiment to complement new ways of using concentrated water discharged from the seawater desalination plant. In this study, metakaolin, which has excellent chloride ion immobilization effect, was used as the main binder, and 10% and 20% of calcium oxide were substituted with the activator. In addition, tap-water(TW) and reverse osmosis brine water(RW) were used as mixed water. As a result of the experiment, the mixture using RW showed higher compressive strength than TW. It also showed low water absorption and high density. In the mixture using RW as mixed water, a hydration reaction substance called Friedel's salt could be observed. Considering the corrosion problem of steel, RW is considered to be applicable to products such as non-reinforced concrete, brick, and curb stone. Through this study, it is thought that it is meaningful to propose a new application method other than the ocean release of RW.

Analysis of ultra-low radionuclide concentrations in water samples with baromembrane method

  • Vasyanovich, Maxim;Ekidin, Aleksey;Trapeznikov, Alexander;Plataev, Anatoly
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.253-257
    • /
    • 2021
  • This work demonstrates the use of baromembrane method based on reverse osmosis (RO) process. The method is realized on mobile complex, which allows to concentrate and determine ultra-low activity of radionuclides in water cooling ponds of Russian nuclear fuel cycle enterprises. The existence level of radionuclide background creates difficult conditions for identification the contribution of liquid discharges enterprise, as standard monitoring methods have a very high detection level for radionuclides. Traditional methods for determining the background radionuclides concentrations require the selection of at least 500 liters (l) of water, followed by their evaporation to form a dry residue. This procedure with RO membranes requires at least 5 days. It is possible to reduce the time and energy spent on evaporation of hundreds of water liters by pre-concentrating radionuclides in a smaller sample volume with baromembrane method. This approach allows preliminary concentration of water samples from 500 l volume till 20 l volume during several hours. This approach is universal for the concentration of dissolved salts of any heavy metals, other organic compounds and allows the preparation of water countable samples in much shorter time compared to the traditional evaporation method.

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

Evaluation on Chemical Cleaning Efficiency of Fouled in $1,000,000m^3/day$ Sea Water Reverse Osmosis Membrane Plant (해수용 역삼투막을 이용한 $1,000,000m^3/day$ 규모의 플랜트에서 오염된 막의 화학세정 효율 평가)

  • Park, Jun-Young;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Eui-Jong;Lee, Yong-Soo;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon and major obstacle in the economic and efficient operation under sea water reverse osmosis (SWRO). When fouling occurs on the membrane surface, the permeate quantity and quality decrease, the trans-membrane pressure (TMP) and operation costs increase, and the membrane may be damaged. Therefore, chemical cleaning process is important to prevent permeate flow from decreasing in RO membrane filtration process. This study focused on proper chemical cleaning condition for Shuaibah RO plant in Saudi Arabia. Several chemical agents were used for chemical cleaning at different contact time and concentrations of chemicals. Also autopsy analysis was performed using LOI, FT-IR, FEEM, SEM and EDX for assessment of fouling. Specially, FEEM analysis method was thought as analyzing and evaluating tool available for selection of the first applied chemical cleaning dose to predict potential organic fouling. Also, cleaning time should be considered by the condition of RO membrane process since the cleaning time depends on the membrane fouling rate. If the fouling exceeds chemical cleaning guideline, to perfectly remove the fouling, certainly, the chemical cleaning is increased with membrane fouling rate influenced by raw water properties, pre-treatment condition and the point of the chemical cleaning operation time. Also choice of cleaning chemicals applied firstly is important.

Ultrafiltration as a pretreatment for seawater desalination: A review

  • Lau, W.J.;Goh, P.S.;Ismail, A.F.;Lai, S.O.
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.15-29
    • /
    • 2014
  • Reverse Osmosis (RO) desalination has gained wide and increasing acceptance around the world as a straightforward undertaking to alleviate the alarming water crisis. An enhanced monitoring of the quality of the water feeding in seawater RO (SWRO) plant through the application of an effective pretreatment option is one of the keys to the success of RO technology in desalination plants. Over the past 10 years, advances in ultrafiltration (UF) membrane technologies in application for water and wastewater treatment have prompted an impetus for using membrane pretreatment in seawater desalination plants. By integrating SWRO plant with UF pretreatment, the rate of membrane fouling can be significantly reduced and thus extend the life of RO membrane. With the growing importance and significant advances attained in UF pretreatment, this review presents an overview of UF pretreatment in SWRO plants. The advantages offered by UF as an alternative of pretreatment option are compared to the existing conventionally used technologies. The current progress made in the integration of SWRO with UF pretreatment is also highlighted. Finally, the recent advances pursued in UF technology is reviewed in order to provide an insight and hence path the way for the future development of this technology.

The Closed Recycling System for Combination fish Culture and Hydroponic Vegetable Production

  • Takahiro-SAITO;Koji-OTSUBO;Lee, Gonigin;Seishu--TOJO;Kengo-WATANABE;I, Fusakazu-A
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.584-590
    • /
    • 1993
  • The constructed closed recycling system discussed in this technical report will be economically viable in future for the production of fish and vegetable in earth, space station and space colony, further, it will contribute a lot in the prevention of pollution in the world's ecological system. To make combined system, water management (Nitrification) is required, and it took 45 days to breed microorganism which facilitates this process. After this period , the recycle was confirmed to be working .Using derived equations, the expected nutrient characteristics of waste water were determined and it was found that the resulting nutrient balance was almost same as that in hydroponic solution when KOH was added to maintain pH level. Reverse osmosis (RO) system could solve the problem of the low nutrient concentration . It was found that plants grow well in fish waste water which was produced using RO system. RO system could combine fish and plant production through the advantageous use of separated high concentration water for plant and permeated water for fish in integrated combined system.

  • PDF

Forward osmosis membrane filtration for microalgae harvesting cultivated in sewage effluent

  • Kim, Su-Bin;Paudel, Sachin;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • The purpose of this study is to evaluate the performance of forward osmosis (FO) system for harvesting microalgae cultivated in secondary sewage effluent. Microalgae species used in this study were chlorella sp. ADE4. The drawing agents used for forward osmosis system were seawater and concentrate of sea water reverse osmosis (SWRO) system. Chlorella sp. ADE4 cultured in secondary sewage effluent illustrated moderate efficiency in removal of total nitrogen (TN) (68%) and superior performance in total phosphorus (TP) removal (99%). Comparison of seawater and SWRO concentrate as drawing agent were made in FO membrane separation of the microalgae. The result from this study depicts that SWRO concentrate is strong drawing agent in FO membrane system providing an average dewatering rate of $4.8L/(m^2{\cdot}hr)$ compared to seawater with average dewatering of $2.9L/(m^2{\cdot}hr)$. Results obtained from this study indicated that FO system could be viable option for harvesting the microalgae for further biodiesel production. SWRO concentrate as a drawing agent could be very important finding in field of membrane technology for disposal of SWRO concentrate.

A Study on Simulation Model for RAM Analysis of SWRO Plant (SWRO 플랜트의 RAM 분석을 위한 시뮬레이션 모델 연구)

  • Kim, Yong Soo;Park, Jungwon;Choi, Sukho;Kang, Jun-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • The Sea Water Reverse Osmosis (SWRO) plant should take into account the availability of the plant from the design stage for long-term and continuous fresh water production. As it occurs, it is necessary to establish a corrective maintenance plan and preventive maintenance plan to maintain availability. In the field of complex engineering structures such as seawater desalination plants, it is difficult to estimate the reliability or availability of the system in a mathematical way. This study develops RAM analysis framework and model, and proposes discrete event simulation model as a application sowtware specialized for seawater desalination plant. Considering the characteristics of the plant maintenance, in case of corrective maintenance, we propose a preventive maintenance policy that not only repairs or replaces a single-broken part, but also simultaneously maintains all accessible parts according to the level of overhaul. A case study was conducted to estimate the availability of the system based on the field data of the seawater desalination plant in Korea and Saudi Arabia. The result was close to the expected availability of the plant.

Impact Analysis of Water Blending to Reverse Osmosis Desalination Process (원수 블렌딩이 해수담수화 역삼투 공정 성능에 미치는 영향)

  • Kim, Jihye;Park, Hyung Jin;Lee, Kyung-Hyuk;Kwon, Boungsu;Kwon, Soonbuhm;Lim, Jae-Lim
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.190-199
    • /
    • 2020
  • The utilization of multiple water sources becomes important due to the master plan for development of water supply released by Ministry of Environment, Korea in 2018. In this study, therefore, the analysis of comprehensive effect in blending applicable water sources in Daesan where 100,000 ㎥/d seawater desalination plant will be constructed for industrial use was performed. The increase in mixing ratio of other water sources with seawater reduced salinity up to 50%, but negatively impacted the turbid and organic matter. Lab-scale reverse osmosis performance test also found that membrane fouling was exacerbated in blended water condition. The simulation results of reverse osmosis indicated 39% energy saving on average is expected at the one-to-one blending ratio, however, long-term performance test at the pilot-scale plant is highly required to evaluate the inclusive impact of mixing seawater and other water sources.