• Title/Summary/Keyword: Reverse Logistics Network Design

Search Result 11, Processing Time 0.029 seconds

A Genetic Algorithm Approach for Logistics Network Integrating Forward and Reverse Flows (역물류를 고려한 통합 물류망 구축을 위한 유전 알고리듬 해법)

  • Ko, Hyun-Jeung;Ko, Chang-Seong;Chung, Ki-Ho
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.141-151
    • /
    • 2004
  • As today's business environment has become more and more competitive, forward as well as backward flows of products among members belonging to a supply chain have been increased. The backward flows of products, which are common in most industries, result from increasing amount of products that are returned, recalled, or need to be repaired. Effective management for the backward flows of products has become an important issue for businesses because of opportunities for simultaneously enhancing profitability and customer satisfaction from returned products. Since third party logistics service providers (3PLs) are playing an important role in reverse logistics operations, they should perform two simultaneous logistics operations for a number of different clients who want to improve their logistics operations for both forward and reverse flows. In this case, distribution networks have been independently designed with respect to either forward or backward flows so far. This paper proposes a mixed integer programming model for the design of network integrating both forward and reverse logistics. Since the network design problem belongs to a class of NP-hard problems, we present an efficient heuristic algorithm based on genetic algorithm (GA), of which the performance is compared to the lower bound by Lagrangian relaxation. Finally, the validity of proposed algorithm is tested using numerical examples.

Model and Algorithm for Logistics Network Integrating Forward and Reverse Flows (역물류를 고려한 통합 물류망 구축에 대한 모델 및 해법에 관한 연구)

  • Ko Hyun Jeung;Ko Chang Seong;Chung Ki Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.375-388
    • /
    • 2004
  • As today's business environment has become more and more competitive, forward as well as backward flows of products among members belonging to a supply chain have been increased. The backward flows of products, which are common in most industries, result from increasing amount of products that are returned, recalled, or need to be repaired. Effective management for these backward flows of products has become an important issue for businesses because of opportunities for simultaneously enhancing profitability and customer satisfaction from returned products. Since third party logistics service providers (3PLs) are playing an important role in reverse logistics operations, the 3PLs should perform two simultaneous logistics operations for a number of different clients who want to improve their logistics operations for both forward and reverse flows. In this case, distribution networks have been independently designed with respect to either forward or backward flows so far. This paper proposes a mixed integer programming model for the design of network integrating both forward and reverse logistics. Since this network design problem belongs to a class of NP-hard problems, we present an efficient heuristic based on Lagrangean relaxation and apply it to numerical examples to test the validity of proposed heuristic.

  • PDF

Reverse Logistics Network Design with Incentive-Dependent Return

  • Asghari, Mohammad;Abrishami, Salman J.;Mahdavi, Faezeh
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.383-397
    • /
    • 2014
  • Reverse logistics network design issues have been popularly discussed in recent years. However, few papers in the past literature have been dedicated to incentive effect on return quantity of used products. The purpose of this study is to formulate a dynamic nonlinear programming model of reverse logistics network design with the aim of managing the used products allocation by coordinating the collection centers and recovery facilities to warrant economic efficiency. In the optimization model, a fuzzy approach is applied to interpret the relationship between the rate of return and the suggested incentives. Due to funding constraints in setting up the collection centers, this work considers these centers as multi-capacity levels, which can be opened or closed at different periods. In view of the fact that the problem is known as NP-hard, we propose a heuristic method based on tabu search procedure to solve the presented model. Finally, several dominance properties of optimal solutions are demonstrated in comparison with the results of a state-of-the-art commercial solver.

Generalized Vehicle Routing Problem for Reverse Logistics Aiming at Low Carbon Transportation

  • Shimizu, Yoshiaki;Sakaguchi, Tatsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • Deployment of green transportation in reverse logistics is a key issue for low carbon technologies. To cope with such logistic innovation, this paper proposes a hybrid approach to solve practical vehicle routing problem (VRP) of pickup type that is common when considering the reverse logistics. Noticing that transportation cost depends not only on distance traveled but also on weight loaded, we propose a hierarchical procedure that can design an economically efficient reverse logistics network even when the scale of the problem becomes very large. Since environmental concerns are of growing importance in the reverse logistics field, we need to reveal some prospects that can reduce $CO_2$ emissions from the economically optimized VRP in the same framework. In order to cope with manifold circumstances, the above idea has been deployed by extending the Weber model to the generalized Weber model and to the case with an intermediate destination. Numerical experiments are carried out to validate the effectiveness of the proposed approach and to explore the prospects for future green reverse logistics.

Reverse Logistics : Research Issues and Literature Review (역방향 로지스틱스 : 과제 및 기존연구)

  • Lee, Dong-Ho;Kim, Hwa-Joong;Kim, Ji-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.270-288
    • /
    • 2008
  • Among various environmental issues, those for worn-out products are increasingly important due to rapid development and improvement of products, shortages of dumping sites and waste-incineration facilities, and legislation pressures and customer recognitions to protect the environment. Under such circumstances, collection and product recovery activities give rise to additional material flows from customers back to collectors and reprocessors. Reverse logistics, the opposite direction of the conventional forward logistics, is concerned with the management of this material flow. In this paper, we consider the emerging concept of reverse logistics. First, the concept of sustainable development is explained to explain the philosophical background of various environmental issues. Second, we explain the basics of reverse logistics, which includes the overall structure and the classification of network types. Finally, we review the previous research articles, especially in the aspect of industrial engineering, after classifying the decision problems into : (a) product recovery strategy; (b) network design and operation; (c) inventory management; (d) disassembly problems; and (e) remanufacturing problems.

A Cooperative Coevolutionary Algorithm for Optimizing a Reverse Logistics Network Model (역물류 네트워크 모델의 최적화를 위한 협력적 공진화 알고리즘)

  • Han, Yong-Ho
    • Korean Management Science Review
    • /
    • v.27 no.3
    • /
    • pp.15-31
    • /
    • 2010
  • We consider a reverse logistics network design problem for recycling. The problem consists of three stages of transportation. In the first stage products are transported from retrieval centers to disassembly centers. In the second stage disassembled modules are transported from disassembly centers to processing centers. Finally, in the third stage modules are transported from either processing centers or a supplier to a manufacturer, a recycling site, or a disposal site. The objective is to design a network which minimizes the total transportation cost. We design a cooperative coevolutionary algorithm to solve the problem. First, the problem is decomposed into three subproblems each of which corresponds to a stage of transportation. For subproblems 1 and 2, a population of chromosomes is constructed. Each chromosome in the population is coded as a permutation of integers and an algorithm which decodes a chromosome is suggested. For subproblem 3, an heuristic algorithm is utilized. Then, a performance evaluation procedure is suggested which combines the chromosomes from each of two populations and the heuristic algorithm for subproblem 3. An experiment was carried out using test problems. The experiments showed that the cooperative coevolutionary algorithm generally tends to show better performances than the previous genetic algorithm as the problem size gets larger.

Heuristic Algorithms for Capacitated Collection Network Design in Reverse Logistics

  • Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-66
    • /
    • 2008
  • Refuse collection, one of important elements in reverse logistics, is an activity rendering recyclables or wastes and moving them to some points where further treatment is required. Among various decisions in the collection activity, we focus on network design, which is the problem of locating collection points as well as allocating refuses at demand points to collection points while satisfying the capacity restriction at each collection point. Here, the collection point is the place where recyclables or wastes near the point are gathered, and locating the collection points is done by selecting them from a given set of potential sites. The objective is to minimize the sum of fixed costs to open collection points and transportation costs to move refuses from demand points to collection points. An integer programming model is developed to represent the problem mathematically and due to the complexity of the problem, two types of heuristics, one with simultaneous and the others with separate location and allocation, are suggested. Computational experiments were done on test problems up to 500 potential sites, and the results are reported. In particular, some heuristics gave near optimal solutions for small-size test problems, i.e., 2% gaps in average from the optimal solution values.

A GRASP heuristics for Expanded multi-source Weber problem on Reverse Logistics Network (역물류 네트워크를 위한 확장된 복수 Weber 문제의 GRASP 해법)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • Expanded muti-source Weber problem (EWP), which introduced in this paper, is a reverse logistics network design problem to minimize the total transportation cost from customers thorough regional center to central center. Decision factor of EWP are the locations of regional centers and a central center. We introduce a GRASP heuristics for the EWP. In the suggested GRASP, an expanded iterative location allocation method (EILA) is introduced based on the Cooper's iterative location allocation method[3]. For the initial solution of GRASP, allocation first seed (AFSeed) and location first seed (LFSeed) are developed. The computational experiment for the objective value shows that the LFSeed is better than the AFSeed. Also the calculating time of the LFSeed is better than that of the AFSeed.

A Location-Routing Problem for Logistics Network Integrating Forward and Reverse Flow (역물류를 고려한 통합물류망에서의 입지:경로문제)

  • Na, Ho-Young;Lee, Sang-Heon
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • An effective management for reverse flows of products such as reuse, repair and disposal, has become an important issue for every aspect of business. In this paper, we study the Location-Routing Problem (LRP) in the multi-stage closed-loop supply chain network. The closed-loop supply chain in this study integrated both forward and reverse flows. In forward flow, a factory, Distribution Center (DC) and retailer are considered as usual. Additionally in reverse flow, we consider the Central Returns collection Center (CRC) and disposal facility. We propose a mixed integer programming model for the design of closed-loop supply chain integrating both forward and reverse flows. Since the LRP belongs to an NP-hard problem, we suggest a heuristic algorithm based on genetic algorithm. For some test problems, we found the optimal locations and routes by changing the numbers of retailers and facility candidates. Furthermore, we compare the efficiencies between open-loop and closed-loop supply chain networks. The results show that the closed-loop design is better than the open one in respect to the total routing distance and cost. This phenomenon enlarges the cut down effect on cost as an experimental space become larger.

Designing Refuse Collection Networks under Capacity and Maximum Allowable Distance Constraints

  • Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.19-29
    • /
    • 2013
  • Refuse collection network design, one of major decision problems in reverse logistics, is the problem of locating collection points and allocating refuses at demand points to the opened collection points. As an extension of the previous models, we consider capacity and maximum allowable distance constraints at each collection point. In particular, the maximum allowable distance constraint is additionally considered to avoid the impractical solutions in which collection points are located too closely. Also, the additional distance constraint represents the physical distance limit between collection and demand points. The objective is to minimize the sum of fixed costs to open collection points and variable costs to transport refuses from demand to collection points. After formulating the problem as an integer programming model, we suggest an optimal branch and bound algorithm that generates all feasible solutions by a simultaneous location and allocation method and curtails the dominated ones using the lower bounds developed using the relaxation technique. Also, due to the limited applications of the optimal algorithm, we suggest two heuristics. To test the performances of the algorithms, computational experiments were done on a number of test instances, and the results are reported.