• 제목/요약/키워드: Retaining Wall Structure

검색결과 183건 처리시간 0.03초

식재용 블록을 이용한 옹벽 녹화 기법에 관한 연구(I) - Eco-Stone의 시공 사례를 중심으로 - (The Retaining Wall Revegetation Technology Using Planting Blocks(I) - A Case study on the Eco-Stone structure -)

  • 한성식;정경진
    • 한국환경복원기술학회지
    • /
    • 제2권1호
    • /
    • pp.94-102
    • /
    • 1999
  • The retaining wall is a structure which was made for changing land form in many construction. The first role of the retaining wall is to maintain the slope stability. But recently, the amount of retaining wall have been increasing because of the expansion of construction works and the amenity of urban environment have been decreasing because of environmental destruction and the scenic heterogeneity. So we should consider the slope stability and ecological stability at the same time. The purpose of this study is to develop the retaining wall revegetation technology using the Eco-Stone, the structure of co-satisfying which included the slope stability and the revegetation effect. Eco-Stone is a structure which has high stability for earth pressure, settlement and drainage. And cost and term of construction works also have been decreased. Eco-Stone structure is one of factors composing the ecological network which is harmonize with surrounding environment. In this way, it is expected that the ecological habitats of various species would be restored.

  • PDF

노반 토구조물로서의 이용을 위한 새로운 단섬유 복합보강토 옹벽구조 개발 (Development of Short-fiber Composite Reinforced Retaining Wall for Railroad Soil Structure)

  • 박영곤;박태순;장병욱;이영제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1014-1019
    • /
    • 2004
  • The development of both economical and consistent structure is strongly required for the whole reorganization of the railway network in Korea. Retaining wall is one of the major structures in the vicinity of the railway, which needs improving its external appearance and stability. Therefore, this study presents a new type of retaining wall, so called short-fiber composite reinforced retaining wall, as an alternative of retaining walls, which can be used for constructing the slope and roadbed soil structures. The results from real-scale test and dynamic numerical analysis for developed new one, which helps both the improvement of the external appearance and also the optimum use of the limited space near the railway, show excellent performance. On the basis of these results, it is judged that short-fiber composite reinforced retaining wall has the advantages of choosing the front wall freely and having a chance to use any low quality soil as backfill.

  • PDF

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

옹벽 시설물의 객관적인 상태평가 기준정립 (The Standard Thesis of Objectivity Condition Evaluation for Infrastructure(Retaining Walls))

  • 이종영;신창건;장범수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 사면안정학술발표회
    • /
    • pp.3.1-11
    • /
    • 2003
  • Recently the problems related to the failure of the retaining wall structure has become great concern since the damage to the properties and human losses have occurred in the rainy season. However, a detail guideline on safety inspection and appropriate diagnosis on the retaining wall structure have not yet proposed and therefore, the inspection process and results are mainly dependant upon the engineers. The objective of this study is to propose objective and quantitative evaluation method for the condition based on the damage shapes and material types. In this purpose, composing materials of retaining wall are divided Into concrete, gabion, stone and reinforced earth, and then the evaluation items and method are suggested on the basis of the materials and structural characteristics of the retaining wall.

  • PDF

농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석 (Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure)

  • 신방응;오세욱;권영철
    • 한국농촌건축학회논문집
    • /
    • 제2권2호
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF

The numerical study of seismic behavior of gravity retaining wall built near rock face

  • Taravati, Hossein;Ardakani, Alireza
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.179-186
    • /
    • 2018
  • We present the accurate investigation the seismic behavior of the gravity retaining wall built near rock face based on numerical method. The retaining wall is a useful structure in geotechnical engineering, where the earthquake is a common phenomenon; therefore, the evaluation of the behavior of the retaining wall during an earthquake is essential. However, in all previous studies, the backfill behind the wall was usually approximated by a homogeneous region, while in contrast, in practice, in many cases retaining walls are used to support the soil pressure in, inhomogeneous, mountainous area. This suggests an accurate investigation of the problem, i.e., numerical analysis. The numerical results will be compared with some of recently proposed analytical methods to show the accuracy of the proposed method. We show that increasing the volume of the rock face yields decreasing the permanent horizontal displacement of the gravity retaining wall built near rock face. Besides, we see that the permanent horizontal displacement of the gravity retaining wall with homogenous backfill is more than permanent horizontal displacement of the gravity retaining wall case of the built near rock face in different frequency contents.

Study of Block-formed Retaining Wall for Reducing Construction Waste

  • Kim, Chun-Ho
    • 한국환경과학회지
    • /
    • 제11권11호
    • /
    • pp.1183-1187
    • /
    • 2002
  • Existing retaining walls are usually made from only one cast form and any damage must be promptly repaired. However, when a part of a retaining wall is repaired, a gap can be created between the repaired and existing parts, along with an unpleasing visual effect. As such, the whole structure is often reconstructed, rather than repairing one part, resulting in construction waste and possible contamination of the environment. Accordingly, the current study proposes a construction method for a retaining wall that uses separate blocks to downsize of quantity of construction waste. In addition, by changing the color or modifying the block cover a more environmentally friendly retaining wall construction method is achieved.

An approach of seismic design for sheet pile retaining wall based on capacity spectrum method

  • Qu, Honglue;Li, Ruifeng;Hu, Huanguo;Jia, Hongyu;Zhang, Jianjing
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.309-323
    • /
    • 2016
  • As the forefront of structural design method, capacity spectrum method can be applied conveniently, and through this method, deformation demand of structure can be considered. However, there is no research for the seismic application in the structure of sheet pile retaining wall to report. Therefore, focusing on laterally loaded stabilizing sheet pile wall, which belongs to flexible cantilever retaining structure and meets the applying requirement of capacity spectrum method from seismic design of building structure, this paper studied an approach of seismic design of sheet pile wall based on capacity spectrum method. In the procedure, the interaction between soil and structure was simplified, and through Pushover analysis, seismic fortification standard was well associated with performance of retaining structure. In addition, by comparing the result of nonlinear time history analysis, it suggests that this approach is applicable.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.