• 제목/요약/키워드: Resultant Displacement

검색결과 62건 처리시간 0.022초

수치해석에 의한 중소형교량 교량기초의 허용침하량 평가 (A Numerical Analysis of Tolerable Settlement for Bridges)

  • 정경자;전경수;조준상;이상헌;변형균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

복합재 블레이드의 1차원 보 모델링 (One-Dimensional Beam Modeling of a Composite Rotor Blade)

  • 이민우;배재성;이수용;이석준;전부일
    • 항공우주시스템공학회지
    • /
    • 제2권1호
    • /
    • pp.7-12
    • /
    • 2008
  • The three-dimensional finite element modeling of a composite rotor blade is very hard and requires much computation effort. The efficient method to model a composite beam is necessary for the dynamic and aeroelastic analyses of rotor blades. In this study, the beam modeling method of a composite rotor blade is studied using VABS. The computer program, VABS (Variational Asymptotic Beam Section Analysis), uses the variational asymptotic method to split a 3-D nonlinear elasticity problem into 2-D cross-sectional analysis and 1-D nonlinear beam problem. The VABS can produce the sectional stiffness coefficients of composite rotor blades with various cross section and initial twist/curvatures, and recover the original 3-D distribution of displacement/strain/stress fields. The results of various cross section beams show that VABS gives us the accurate results comparared to commercial codes and does not need much computation effort. It can be concluded that VABS provides the efficient method to establish the FE model of a composite rotor blade.

  • PDF

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.;Jumaat, Mohd. Zamin
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.625-642
    • /
    • 2010
  • The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

회전축 정렬불량을 가지는 유연 회전디스크의 고유치 해석 (Natural Frequencies of a Spinning Disk Misaligned with the Axis of Rotation)

  • 허진욱;정진태;김원석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.817-825
    • /
    • 2001
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of rotation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in-plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained for the steady-state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out-of-plane displacement, which is discretized by the Galerkin method. Based on the discretized equations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed

  • PDF

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

평균대 도움 짚고 몸 펴 뒤 공중 돌아 오르기 동작에 대한 운동학적 분석 (The Kinematics Analysis of Round-off at end of Beam-salto Backward Stretched with Step-out to Cross on Balance Beam)

  • 김영란
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.99-116
    • /
    • 2003
  • The purpose of this study was to kinematics factors on during round-off at end of beam-salto backward stretched with step-out to cross on balance beam. Four elite female gymnastics players participated as subject of this study. The methods of this study was analyzed using three dimentional analysis. The results and conclusion of this paper is obtained as follows ; 1. The phase of time was the most short time in board touch down phase and board take-off phase. Also, it was shown a more long time in total time compared to previous study. 2. The horizontal displacement of each phase was shown the most high levels in balance beam landing. The vertical displacement was display a non-linearity increase in board take-of phase, and it was shown the most high levels in vertical displacement during landing of balance beam. 3. The horizontal velocity of each phase was shown the most high levels in board touch down, and it was display a gradually decreased levels because flight during board take-of. The resultant velocity of CG on each phase was shown the most high levels in board touch down and board take-off. 4. The angle of hip joint was shown the most high levels as performed a motion in extension state during board take-off, and the angle of knee joint was display a increased levels because of flight cause body extension in board take-off. Also the angle of ankle joint was shown a increasing levels during board take-off. Considering to this results, it is suggest that the change of kinematics factors in board touch down and board take-off is key role on the effective board control.

Correlation between clinical symptoms and magnetic resonance imaging findings in patients with temporomandibular joint internal derangement

  • Jung, Young-Wook;Park, Sung-Hoon;On, Sung-Woon;Song, Seung-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제41권3호
    • /
    • pp.125-132
    • /
    • 2015
  • Objectives: The purpose of this study was to clarify which findings in magnetic resonance imaging (MRI) are good predicators of pain and mouth opening limitation in patients with temporomandibular joint (TMJ) internal derangement (ID). Materials and Methods: Clinical examinations for pain and mouth opening limitation were conducted for suspected TMJ ID. MRI scans were taken within a week of clinical examinations. On the oblique-sagittal plane image, readings were obtained in terms of the functional aspect of disc position, degree of displacement, disc deformity, joint effusion, and osteoarthrosis. Multiple logistic regression analyses were conducted to identify the predictors of pain and mouth opening limitation. Results: A total of 48 patients (96 TMJs) were studied, including 39 female patients and 9 male patients whose ages ranged from 10 to 65 years. The resultant data showed significant correlations between pain and the MR imaging of the degree of disc displacement (P<0.05). The probability of there being pain in moderate to significant cases was 9.69 times higher than in normal cases. No significant correlation was found between mouth opening limitation and MRI findings. Conclusion: We identified a significant correlation between clinical symptoms and MRI findings of ID. The degree of anterior disc displacement may be useful for predicting pain in patients with TMJ ID.

기지금속과 $Al_2O_3$/Al 금속복합재료의 피로 및 주기적 변형거동 (Fatigue and Cyclic Deformation Behavior with the Unreinforced Matrix Alloy and Al/$Al_2O_3$ Metal Matrix Composites)

  • 송정일
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.1-11
    • /
    • 1999
  • 본 연구는 단섬유보강 금속복합재료의 피로 및 주기적 거동에 관한 연구로서, 가압용침법을 이용하여 제조된 Al6061과 이를 기지금속으로 사용한 단섬유보강 Al/$Al_2O_3$-15% 복합재료의 주기적변형(cyclic deformation)과 피로거동(fatigue behavior)에 대해서 실험적으로 고찰하였다. Al/$Al_2O_3$ 복합재로의 피로강도는 210MPa로 나타났고 기지금속은 170MPa로 나타났다. 영구소성변형에 의한 합변위는 피로수명 초기 5%이내에서 대부분 발생하며 파단시의 합변위는 복합재료와 기지금속 모두 축적된 소성변형으로 인하여 인장시험에서의 연신율에 비해 작은 값을 가진다. 금속복합재료의 주기적 변위는 보강재가 전위 전파의 저지역할을 함으로써 기지금속에 비하여 다소 감소하는 것으로 나타났다. 파면관찰결과 기지금속의 경우 금속복합재료에 비해 전체 시험편 단면에서 넓은 영역에서 균열전파 형태를 관찰할 수 있었으며, 또한 금속복합재료의 파면에서는 연속적인 피로하중에 의한 기지금속과 보강재간의 분리(debonding)등의 결과로 보강재가 뽑혀나간 흔적이 관찰되고 있다.

  • PDF

수소 장입 장치를 활용한 액체수소 저장시스템 강재의 CTOD 시험 분석 (Analysis of CTOD Tests on Steels for Liquefied Hydrogen Storage Systems Using Hydrogen Charging Apparatus)

  • 성기영;김정현;이정희;이정원
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.875-884
    • /
    • 2023
  • Hydrogen infiltration into metals has been reported to induce alterations in their mechanical properties under load. In this study, we conducted CTOD (Crack Tip Opening Displacement) tests on steel specimens designed for use in liquid hydrogen storage systems. Electrochemical hydrogen charging was performed using both FCC series austenitic stainless steel and BCC series structural steel specimens, while CTOD testing was carried out using a 500kN-class material testing machine. Results indicate a notable divergence in behavior: SS400 test samples exhibited a higher susceptibility to failure compared to austenitic stainless steel counterparts, whereas SUS 316L test samples displayed minimal changes in displacement and maximum load due to hydrogen charging. However, SEM (Scanning Electron Microscopy) analysis results presented challenges in clearly explaining the mechanical degradation phenomenon in the tested materials. This study's resultant database holds significant promise for enhancing the safety design of liquid hydrogen storage systems, providing invaluable insights into the performance of various steel alloys under the influence of hydrogen embrittlement.

공기막 구조물의 형상해석 (Shape Finding Analysis of Pneumatic Structure)

  • 권택진;서삼열;이장복
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.57-64
    • /
    • 1994
  • The purpose of this paper is to find minimum surface shape of pneumatic structure using the finite element method. The pneumatic membrane structure is a kind of large deformation problem and very flexible composite material, which mean geomatric nonlinearity. It is not to resist for compression and resultant moment. As the displacement due to internal pressure is getting bigger, it should be considered the direction of forces. It becomes non-linear problem with the non-conservative force. The follower-force depends on the deformation and the direction of force is normal to each element. The solution process is obtained the new stiffness matrix (load correction matrix) depending on deformation through each iterated step. However, the stiffness matrix have not the symmetry and influence on the time of covergence. So in this paper Newton-Rhapson method for solving non-linear problem and for using symmetic matrix, the load direction is changed in each iterated step using the transformation matrix.

  • PDF