• Title/Summary/Keyword: Resultant Displacement

Search Result 62, Processing Time 0.023 seconds

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.

Automatic generation of equilibrium and flexibility matrices for plate bending elements using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.387-402
    • /
    • 2008
  • The Integrated Force Method (IFM) has been developed in recent years for the analysis of civil, mechanical and aerospace engineering structures. In this method all independent or internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. The solution by IFM needs the computation of element equilibrium and flexibility matrices from the assumed displacement, stress-resultant fields and material properties. This paper presents a general purpose code for the automatic generation of element equilibrium and flexibility matrices for plate bending elements using the Integrated Force Method. Kirchhoff and the Mindlin-Reissner plate theories have been employed in the code. Paper illustrates development of element equilibrium and flexibility matrices for the Mindlin-Reissner theory based four node quadrilateral plate bending element using the Integrated Force Method.

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.

A non-symmetric non-periodic B3-spline finite strip method

  • Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.247-262
    • /
    • 2004
  • In the earlier application of the spline finite strip method(FSM), the uniform B3-spline functions were used in the longitudinal direction while the conventional interpolation functions were used in the transverse direction to construct the displacement filed in a strip. To overcome the shortcoming of the uniform B3-spline, non-periodic B-spline was developed as the displacement function. The use of non-periodic B3-spline function requires no tangential vectors at both ends to interpolate the geometry of shell and the Kronecker delta property is also satisfied at the end boundaries. Recently, non-periodic spline FSM which was modified to have a multiple knots at the boundary was developed for the shell analysis and applied to the analysis of bridges. In the formulation of a non-symmetric spline finite strip method, the concepts of non-periodic B3-spline and a stress-resultant finite strip with drilling degrees of freedom for a shell are used. The introduction of non-symmetrically spaced knots in the longitudinal direction allows the selective local refinement to improve the accuracy of solution at the connections or at the location of concentrated load. A number of numerical tests were performed to prove the accuracy and efficiency of the present study.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells

  • Han, S.C.;Kim, K.D.;Kanok-Nukulchai, W.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.807-829
    • /
    • 2004
  • The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the isotropic and anisotropic composite material. The effect of the coupling term between the bending strain and displacement has been investigated in the warping problem. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. In composite plates and shells, the transverse shear stiffness is defined by an equilibrium approach instead of using the shear correction factor. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. The results showed very good agreement compared with well-established formulations in the literature.

Three dimensional Kinematic Analysis of Sweep Shot in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 3차원 운동학적 분석)

  • Choi, Ji-Young;Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.49-59
    • /
    • 2006
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. 1. In three dimensional linear velocity of blade the Y axis showed maximum linear velocity almost impact, the X axis(horizontal direction) and the Z axis(vertical direction) maximum linear velocity of blade did not show at impact but after impact this will resulted influence upon hitting puck. 2. The resultant linear velocity of each segment of right arm showed maximum resultant linear velocity at impact. It could be suggest that the right arm swing patterns is kind of push-like movement. therefore the upper arm is the most important role in the right arm swing. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed flexion all around the wrist shot. The angular displacement of trunk in internal-external rotation showed internal rotation angle at the backswing top and and increased the angle after the impact. while there is no significant adduction-abduction. 4. The three dimensional anatomical angular displacement of trunk showed most important role in wrist shot. and is follwed by shoulder joints, in addition the movement of elbow/wrist joints showed least to the shot. this study result showed upperlimb of left is more important role than upperlimb of right.

On the Improvement of a Fully Recursive Formulation for the Dynamic Analysis of Multibody Systems

  • Kang, Sheen-Gil;Yoon, Yong-San
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2003
  • Virtual work in multibody systems is frequently expressed as the inner product of the virtual displacement and the resultant force at the centroid. But provided that the resultant force is converted into the equipollent forces there is no restriction on where the analysis reference point is placed. There are basically three candidate points : the centroid, joint point and the instant global origin. The traditional fully recursive formulation uses the centroid, but the present work verifies that the instant global origin always shows better efficiency (e.g. 86% CPU time of the centroid for quarter car model) and joint point shows the efficiency between that of the centroid and the instant global origin. A discussion on how important it is to define the analysis reference point properly in a fully recursive formulation is also presented.

An Analysis on Volumetric Displacement of Gerotor Hydraulic Motor using Energy Conservation and Torque Equilibrium - Second Report: The Case of a Revolving and Rotating Inner Rotor - (에너지보존과 토크평형을 이용한 제로터 유압모터의 배제용적 해석 - 내부로터 공·자전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • It is difficult to analytically derive a volumetric displacement formula for a gerotor hydraulic motor due to the complexity of the geometric shape of its gear lobes. This work proposes an analytical method for the volumetric displacement, a relatively easy method based upon two physical concepts: conservation between hydraulic energy and mechanical shaft energy, and torque equilibrium for the rotor's motion. The first research using these concepts was conducted on inner and outer rotors rotating with respect to each rotor axis. This work represents the second report conducted on an inner rotor revolving as a planetary motion on the stationary outer rotor. The formula equations regarding the volumetric displacement and flow rate are derived, and the proposed formula about the volumetric displacement is proven to be the same as another analytical displacement formula: the so-called vane length method. From the formula, volumetric displacement is calculated for an example geometry of the gear lobes. The resultant displacement is confirmed to be the same as the value calculated from the chamber volume method. The proposed analytical formula can be utilized in the analysis and design of gerotor hydraulic motors. Because it is based on torque equilibrium, this formula can provide a better understanding of torque performance, such as torque ripple, in designing a gerotor type motor.