• Title/Summary/Keyword: Restraining load

Search Result 43, Processing Time 0.021 seconds

Improvement and Evaluation of Structural performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame under Load Reversals (반복하중을 받는 철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 구조성능 평가 및 개선)

  • 신종학;하기주;김광연;이희종;남왕교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.541-546
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation of and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-l~3), cumulated energy dissipation capacities wear increased by 1.35~l.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;김영수
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;진종태;김영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF

A Study on the Binding Force of Drawbead in the Sheet Metal Forming Process through the finite element and experimental analysis (해석과 실험을 통한 박판성형공정에서의 드로오비드의 구속력에 관한 연구)

  • Bahn, Gab-su;Mo, Chang-ki;Suh, Eui-kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2007
  • It is necessary for development of drawing product with press to have suitable material selection & all process design and the problem during press process has been cleared from judgement of experience & trial and error. Recently we can estimate press process result from computer aided design & FEM. But we can get more reliable result when we can put more precise process variants during FEM. In case of using a drawbead that is used for the material inflow, it is considered for us to put material property, other analysis condition & friction figure when material is passing through the drawbead for better FEM. From our study, we have drawn an analogy bead connection depth, friction figure & drawing and restraining load according to kinds of lubrication from experiment & FEM for the drawbead. We applied above result to the drawing experiment & FEM and confirmed the validity. We could notice the relation between friction figure & drawing load and the friction figure variation according to kinds of lubrication. It is expected to draw more precise analogy that can be used for real process due to more precise process variants application to FEM.

  • PDF

Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube

  • Li, Yang;Qu, Haiyan;Xiao, Shaowen;Wang, Peijun;You, Yang;Hu, Shuqing
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.81-96
    • /
    • 2019
  • The behavior of a new Three-Tube Buckling-Restrained Brace (TTBRB) with circumference pre-stress (${\sigma}_{{\theta},pre}$) in core tube are investigated through a verified finite element model. The TTBRB is composed of one core tube and two restraining tubes. The core tube is in the middle to provide the axial stiffness, to carry the axial load and to dissipate the earthquake energy. The two restraining tubes are at inside and outside of the core tube, respectively, to restrain the global and local buckling of the core tube. Based on the yield criteria of fringe fiber, a design method for restraining tubes is proposed. The applicability of the proposed design equations are verified by TTBRBs with different radius-thickness ratios, with different gap widths between core tube and restraining tubs, and with different levels of ${\sigma}_{{\theta},pre}$. The outer and inner tubes will restrain the deformation of the core tube in radius direction, which causes circumference stress (${\sigma}_{\theta}$) in the core tube. Together with the ${\sigma}_{{\theta},pre}$ in the core tube that is applied through interference fit of the three tubes, the yield strength of the core tube in the axial direction is improved from 160 MPa to 235 MPa. Effects of gap width between the core tube and restraining tubes, and ${\sigma}_{{\theta},pre}$ on hysteretic behavior of TTBRBs are presented. Analysis results showed that the gap width and the ${\sigma}_{{\theta},pre}$ can significantly affect the hysteretic behavior of a TTBRB.

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.

An Angle-Binder Drawbead Simulator for Measuring Drawbead Forces on Inclined Binder Surface (경사진 바인더면의 드로우비드력을 측정하기 위한 모의실험장치)

  • Yang, W.H.;Choi, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.180-184
    • /
    • 2009
  • A novel set of experimental test tooling for measuring pulling and holding forces for drawbeads on binders inclined at a wide range of angles is introduced. A mechanical design featuring a single load cell, a male-female draw bead set, translation and rotation degrees of freedom, and a screw-driven clamping system has been incorporated into a standard tensile test machine. On a real time basis, restraining and holding force data with respect to draw-in displacement may be directly downloaded into a PC for data processing. The proposed experimental system represents a significant breakthrough in drawbead simulation technology due to its relatively low cost, clever design, and versatility. The system is shown to yield excellent experimental data suitable for verifying theory and numerical model predictions.

  • PDF

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Experimental study on fire performance of axially-restrained NSC and HSC columns

  • Wu, Bo;Li, Yi-Hai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.635-648
    • /
    • 2009
  • This paper describes fire performance of eight axially restrained reinforced concrete (RC) columns under a combination of two different load ratios and two different axial restraint ratios. The eight RC columns were all concentrically loaded and subjected to ISO834 standard fire on all sides. Axial restraints were imposed at the top of the columns to simulate the restraining effect of the rest of the whole frame. The axial restraint was effective when the column was expanding as well as contracting. As the results of the experiments have shown, the stiffness of the axial restraint and load level play an important role in the fire behaviors of both HSC and NSC columns. It is found that (a) the maximum deformations during expanding phase were influenced mostly by load ratio and hardly by axial restraint ratio, (b) For a given load ratio, axial restraint ratio had a great impact on the development of axial deformation during contraction phase beyond the initial equilibrium state, (c) increasing the axial restraint increased the value of restraint force generated in both the NSC and HSC columns, and (d) the development of column axial force during the contracting and cooling phase followed nearly parallel trend for columns under the same load ratio.