• Title/Summary/Keyword: Restraining Forces

Search Result 35, Processing Time 0.021 seconds

An Experimental Study on the Restraining Characteristics through Square Drawbead (사각형 드로오비드 인출 특성에 관한 실험적 연구)

  • 박원배;김창만;전기찬;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.170-177
    • /
    • 1995
  • The restraining characteristics for the single square drawbead are discussed. The drawbead restraining forces adn maximum strains by the various drawing angles are measured experimentally. During this procedure , the drawing angles are varied from 0$^{\circ}C$ to 60$^{\circ}C$. Also, the wide range of experimental data of the drawing forces and maximum strains for the various drawbead dimensions, dimensions, clearances and blank holding forces are preseted.

  • PDF

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF

Restraining Characteristics for Single Circular and Round Drawbead (단일원형비드 및 환저비드의 인출 특성에 관한 연구)

  • 김창만;임영석;이항수;전기찬;서대교
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.454-467
    • /
    • 1994
  • The drawbead restraining forces for the various radius of drawbead and die corner are analyzed by the belt theory, and they are compared with the experimental results. During this procedure, the drawing angles are also varied from $0^{\circ}$ to $60^{\circ}$, and the near part of the drawed die corner are divided into fur steps for the theoretical analysis. The stress distributions through the sheet thickness for these steps are also suggested theoretically. The wide range of experimental data of the drawing forces and strain distributions for the various dimension and blank holding forces are presented. It is concluded that the theoretical assumption for the restraining force analysis is very useful from the comparison with the experimental results.

  • PDF

Forming Characteristics of Laser Welded Tailored Blanks II : Stretch Flange Forming Characteristics (레이저 용접 테일러드 블랭크의 기본 성형특성 II : 신장플랜지 성형특성)

  • Park, Gi-Cheol;Han, Su-Sik;Kim, Gwang-Seon;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.36-48
    • /
    • 1998
  • In order to analyze the stretch flange forming characteristics of tailored blanks. laser welded blanks of different thickness and strength combinations were prepared and hole expansion tests were done. The stretch flange formability of laser welded blanks was reduced as increasing the deformation restraining force($strength{\times}thickness$) ratio between two welded sheets. Simulation of stretch forming mode deformation and comparson with experimental results showed that the stretch flange formabili-ty was influenced not only by the difference of the deformation restraining forces between two base sheets but also by the difference of the deformation restraining forces between base sheet and weld. Therefore the stretch flange formability was reduced more rapidly than tensile elongation as increas-ing the deformation restraining force ration. It was also found that simulation of stretch flange forming was more accurate when material properties of weld was given.

  • PDF

Finite Element Analysis and Experiment on Drawing Characteristics through Step Drawbead (계단형 드로오비드의 인출특성에 관한 유한요소해석 및 실험)

  • 박원배;김창만;전기찬;김낙수;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.128-135
    • /
    • 1995
  • Theoretical and experimental drawing characteristics for the step drawbead are discussed. The drawbead restraining forces and strains by the varous drawing angles are measured experimentally. Also, during the blank holding process, the strain distributions of upper and lower skins of specimens are analysed by the 2-D rigid-plastic F.E.M And the drawbead restraining forces and strain distributions for the drawn specimens by the drawing length are obtained by experiment.

  • PDF

Study on the Characteristics of Drawbead Forces in Automotive Stamping Dies (자동차 스템핑 금형의 드로우비드력 특성에 관한 연구)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.431-433
    • /
    • 2007
  • The drawbeads, which is used for controlling the flow of the sheet by imposing the tension and for preventing the springback in the sheet metal forming process, affects a lot the formability because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining and opening forces was manufactured and the drawing forces of circular, square, and step drawbeads are measured. The drawbead restraining and opening forces of a circular drawbead are increased as its drawbead height is increased. Similarly, those of a square drawbead are increased as its height is increased and shoulder radii decreased. Also, those of a step drawbead are increased as its height and difference in their heights are increased.

  • PDF

Study on the Measurement of Restraining and Opening Forces in Drawbeads (드로우비드 상압력과 인출력 측정에 관한 연구)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • The drawbeads, which is used for controlling the flow of the sheet by imposing the tension and for preventing the springback in the sheet metal forming process, affects a lot the formability because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining forces and the drawbead opening forces associated with various drawbead shapes and dimensions and their theoretical evaluation are introduced and verified through the experimental measurement of those of a circular drawbead.

  • PDF

Finite Element Analysis and Experimental Verification for the Drawing Characteristics Through Drawbeads (드로오비드 인출특성에 관한 유한요소해석 및 실험적 검증)

  • 김창만;임영석;서대교
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1844-1853
    • /
    • 1995
  • Theoretical and experimental drawing characteristics for the single circular and square drawbeads are discussed. During the blank holding process, the strain distributions of upper and lower skins of specimens, and the die reactional forces are analysed by F. E. M., and they are compared with the experimental results. The drawbead restraining forces and strain distributions for the drawn specimens by the various drawing length are also analysed and compared with the experimental results. It is concluded that the theoretical simulations and results could be very useful for the prediction of real cases.

Study on the Characteristics of Drawbead Forces in Automotive Stamping Dies (자동차 스템핑 금형의 드로우비드력 특성에 관한 연구)

  • Moon, S.J.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.457-462
    • /
    • 2007
  • The drawbeads, which are used for controlling the flow of the sheet into die cavity by imposing the tension and for preventing the forming defects like wrinkling, springback, etc. during the sheet forming process, affect the formability strongly because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining and opening forces is manufactured and the drawing forces of circular, square, and step drawbeads are measured. The drawbead restraining and opening forces of a circular drawbead are increased as its drawbead height is increased. Similarly, those of a square drawbead are increased as its height is increased and shoulder radii decreased. The drawbead forces obtained from the experiment were compared with those calculated in the numerical simulation of stamping process of automotive fender. Good agreement was found so that the experimental measurements can be used in the simulation of auto-body stamping process.

Circular Drawbead Forming and Drawing Characteristics for Welded Sheets (용접된 판재에 대한 원형 드로비드 성형 및 인출 특성)

  • 김홍종;허영무;김낙수;김헌영;서대교
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.340-346
    • /
    • 1999
  • Circular drawbead forming and drawing characteristics of CO2 laser welded SPC1 blanks are investigated by experiments and numerical analysis. During the drawbead forming process, the distributions of major strain on upper and lower skins of the specimens are measured. During the drawing process, the drawing forces and the strain distributions are investigated. For the numerical analysis. DYNA3D and SGTAS, a developed rigid-plastic finite-element computer program are used. Numerical results predicted the deformation characteristics well in comparison with experiments. It is concluded that the strains and restraining forces during the forming and the drawing processes show different patterns according to the combination of welded blanks.

  • PDF