• 제목/요약/키워드: Response variability

검색결과 404건 처리시간 0.034초

강정의 관능적 특성에 의한 찹쌀의 수침조건 최적화 (Optimizing Steeping Conditions of Waxy Rice Based on the Sensory Properties of Gangjung (a Traditional Korean Oil-Puffed Snack))

  • 김행란;김경미;김광옥
    • 한국식품과학회지
    • /
    • 제41권4호
    • /
    • pp.464-470
    • /
    • 2009
  • 찹쌀의 수침온도와 수침기간이 강정의 관능적 특성에 미치는 영향에 대해 반응표면분석을 적용하여 찹쌀의 최적 수침조건을 설정하였다. 강정의 21가지 관능적 특성 중 모형설명력이 높고 문헌상 강정의 품질 특성에 영향을 미치는 것으로 보고된 특성인 '팽화된 정도', '신맛', 'butyric acid 향미', '경도', '입안에서 녹는 정도'의 5가지 특성으로 데이터를 축소하여 최적화에 사용하였다. 그 결과 찹쌀의 최적 수침조건은 $31.5^{\circ}C$에서 9일간 수침하는 것으로 결정되었다.

Interpretation of Varietal Response to Rice Leaf Blast by G$\times$E Analysis with Reduced Number of Nursery Test Sites

  • Yang, Chang-Ihn;E. L. Javier;Won, Yong-Jae;Yang, Sae-Jun;Park, Hae-Chune;Shin, Young-Boum
    • 한국작물학회지
    • /
    • 제45권5호
    • /
    • pp.316-321
    • /
    • 2000
  • Blast severity data of 39 rice varieties at 11 sites in Korea from 1997 to 1999 were analyzed using AMMI model and pattern analysis. Genotype x Environment (G$\times$E) interaction sum of squares (SS) accounted for 12 % of the total SS. Eight genotype groups and seven location groups were identified based on blast reaction pattern. The data obtained from over 21 sites with 44 test varieties from 1981 to 1996 were also considered. These were compared with the 1997-1999 data using the G$\times$E analysis results. Majority of the variability in the Korean Rice Blast Nursery (KRBN) were attributable to variations due to genotypes. Variations of G$\times$E interaction were maintained though test sites were reduced from 21 to 11 sites. Broadly compatible biological discriminative varieties identified were Nagdongbyeo and Akibare while broadly incompatible biological discriminative varieties identified were Hangangchalbyeo and Seogwangbyeo. Key sites for future evaluation work could be selected from location groups. Each location group should be represented by the site with the strongest interaction pattern. Blast responses in Cheolwon, Gyehwa, Suwon, Iksan, and Icheon showed different patterns from other locations.

  • PDF

Characterization of the Spatial Variability of Paper Formation Using a Continuous Wavelet Transform

  • Keller, D.Steven;Luner, Philip;Pawlak, Joel J.
    • 펄프종이기술
    • /
    • 제32권5호
    • /
    • pp.14-25
    • /
    • 2000
  • In this investigation, a wavelet transform analysis was used to decompose beta-radiographic formation images into spectral and spatial components. Conventional formation analysis may use spectral analysis, based on Fourier transformation or variance vs. zone size, to describe the grammage distribution of features such as flocs, streaks and mean fiber orientation. However, these methods have limited utility for the analysis of statistically stationary data sets where variance is not uniform with position, e.g. paper machine CD profiles (especially those that contain streaks). A continuous wavelet transform was used to analyze formation data arrays obtained from radiographic imaging of handsheets and cross machine paper samples. The response of the analytical method to grammage, floc size distribution, mean fiber orientation an sensitivity to feature localization were assessed. From wavelet analysis, the change in scale of grammage variation as a function of position was used to demonstrate regular and isolated differences in the formed structure.

  • PDF

Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper

  • Khansefid, Ali;Maghsoudi-Barmi, Ali;Khaloo, Alireza
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.523-532
    • /
    • 2019
  • Different types of gas reservoir such as Liquid Natural Gas (LNG) are among the strategic infrastructures, and have great importance for any government or their private owners. To keep the tank and its contents safe during earthquakes especially if the contents are of hazardous or flammable materials; using seismic protection systems such as base isolator can be considered as an effective solution. However, the major deficiency of this system can be the large deformation in the isolation level which may lead to the failure of bearing system. In this paper, as a solution, the efficacy of an optimally designed combined vibration control system, the combined laminated rubber isolator and rotational friction damper, is investigated to evaluate the enhancement of an existing metal tank response under both far- and near-field earthquakes. Responses like impulsive and convective accelerations, base shear, and sloshing height are studied herein. The probabilistic framework is used to consider the uncertainties in the structural modeling, as well as record-to-record variability. Due to the high calculation cost of probabilistic methods, a simplified structural model is used. By using the Mont-Carlo simulation approach, it is revealed that this combined isolation system is a highly reliable system which provides considerable enhancement in the performance of reservoir, not only leads to the reduction of probability of catastrophic failure of the tank but also decrease the reservoir damage during the earthquake. Moreover, the relative displacement of the isolation level is controlled very well by this combined system.

Vortex-induced vibration characteristics of multi-mode and spanwise waveform about flexible pipe subject to shear flow

  • Bao, Jian;Chen, Zheng-Shou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.163-177
    • /
    • 2021
  • Numerical simulations of the Vortex-Induced Vibration (VIV) about a large-scale flexible pipe subject to shear flow were carried out in this paper. Efficiency verification was performed firstly, validating that the proposed fluid-structure interaction solution strategy is competent in predicting the VIV response. Then, the VIV characteristics related to multi-mode and spanwise hybrid waveform about the flexible pipe attributed to shear flow were investigated. When inflow velocity rises, higher vibration modes are apt to be excited, and the spanwise waveform easily convertes from a standing-wave-dominated status to a hybrid standing-traveling wave status. The multi-mode or even multiple-dominant-mode is prone to occur, that is, the dominant mode is often followed by several apparent subordinate modes with considerable vibration energy. Hence, the shedding frequencies no longer obey Strouhal law, and vibration trajectories become intricate. According to the motion analysis concerning the coupled cross-flow and in-line vibrations, as well as the corresponding wake patterns, a tight coupling interaction exists between the structural deformation and the wake flow behind the flexible pipe. In addition, the evolution of the vortex tube along the pipe span and a strong 3D effect are observed due to the slenderness of the flexible pipe and the variability of the vortex shedding attributed to the shear flow.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • 한국해양공학회지
    • /
    • 제36권6호
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.

Implementation and characterization of flash-based hardware security primitives for cryptographic key generation

  • Mi-Kyung Oh;Sangjae Lee;Yousung Kang;Dooho Choi
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.346-357
    • /
    • 2023
  • Hardware security primitives, also known as physical unclonable functions (PUFs), perform innovative roles to extract the randomness unique to specific hardware. This paper proposes a novel hardware security primitive using a commercial off-the-shelf flash memory chip that is an intrinsic part of most commercial Internet of Things (IoT) devices. First, we define a hardware security source model to describe a hardware-based fixed random bit generator for use in security applications, such as cryptographic key generation. Then, we propose a hardware security primitive with flash memory by exploiting the variability of tunneling electrons in the floating gate. In accordance with the requirements for robustness against the environment, timing variations, and random errors, we developed an adaptive extraction algorithm for the flash PUF. Experimental results show that the proposed flash PUF successfully generates a fixed random response, where the uniqueness is 49.1%, steadiness is 3.8%, uniformity is 50.2%, and min-entropy per bit is 0.87. Thus, our approach can be applied to security applications with reliability and satisfy high-entropy requirements, such as cryptographic key generation for IoT devices.

Dynamic Configuration and Operation of District Metered Areas in Water Distribution Networks

  • Bui, Xuan-Khoa;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2021
  • A partition of water distribution network (WDN) into district metered areas (DMAs) brings the efficiency and efficacy for water network operation and management (O&M), especially in monitoring pressure and leakage. Traditionally, the DMA configurations (i.e., number, shape, and size of DMAs) are permanent and cannot be changed occasionally. This leads to changes in water quality and reduced network redundancy lowering network resilience against abnormal conditions such as water demand variability and mechanical failures. This study proposes a framework to automatically divide a WDN into dynamic DMA configurations, in which the DMA layouts can self-adapt in response to abnormal scenarios. To that aim, a complex graph theory is adopted to sectorize a WDN into multiscale DMA layouts. Then, different failure-based scenarios are investigated on the existing DMA layouts. Here, an optimization-based model is proposed to convert existing DMA layouts into dynamic layouts by considering existing valves and possibly placing new valves. The objective is to minimize the alteration of flow paths (i.e., flow direction and velocity in the pipes) while preserving the hydraulic performance of the network. The proposed method is tested on a real complex WDN for demonstration and validation of the approach.

  • PDF

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Parviz Tafazzoli Moghaddam;Pezhman Fazeli Dehkordi;Mahmoud Ghazavi
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.543-552
    • /
    • 2023
  • The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.