Acknowledgement
This research was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2018-0-00230, [TrusThingz Project]). This research was supported by the Unmanned Vehicles Core Technology Research and Development Program through the National Research Foundation of Korea (NRF) and the Unmanned Vehicle Advanced Research Center (UVARC) funded by the Ministry of Science and ICT, Republic of Korea (No. 2020M3C1C1A01084523)
References
- S. Li, T. Zhang, B. Yu, and K. He, A provably secure and practicle PUF-based end-to-end mutual authentication and key exchange protocol for IoT, IEEE Sensors J. 21 (2021), no. 4, 5487-5501. https://doi.org/10.1109/JSEN.2020.3028872
- V. P. Yanambaka, S. P. Mohanty, E. Kougianos, and D. Puthal, PMsec: Physical unclonable function-based robust and lightweight authentication in the Internet of Medical Things, IEEE Trans. Consum. Electron. 65 (2019), no. 3, 388-397. https://doi.org/10.1109/TCE.2019.2926192
- A. Yazdinejad, R. M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, and M. Aledhari, Enabling drones in the internet of things with decentralized blockchain-based security, IEEE Int. Things J. 8 (2021), no. 8, 6406-6415. https://doi.org/10.1109/JIOT.2020.3015382
- C. Huth, D. Becker, J. G. Merchan, P. Duplys, and T. Guneysu, Securing systems with indispensable entropy: LWE-based lossless computational fuzzy extractor for the Internet of Things, IEEE Access 5 (2017), no. 2, 11909-11926. https://doi.org/10.1109/ACCESS.2017.2713835
- Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, A survey on security and privacy issues in Internet of Things, IEEE Int. Things J. 4 (2017), no. 5, 1250-1258. https://doi.org/10.1109/JIOT.2017.2694844
- M. N. Aman, K. C. Chua, and B. Sikdar, Physical unclonable functions for IoT security, (Proceedings of the 2nd ACM International Workshop on IoT Privacy, Trust, and Security, Xi'an, China), 2016, pp. 10-13. https://doi.org/10.1145/2899007.2899013
- J. R. Wallrabenstein, Practical and secure IoT device authentication using physical unclonable functions, (IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria), 2016, pp. 99-106. https://doi.org/10.1109/FiCloud.2016.22
- R. S. Pappu, Physical one-way functions, Ph.D. dissertation, MIT, Cambridge, MA, USA, (2001).
- S. Lim, B. Song, and S. Jung, Highly independent MTJ-based PUF system using diode-connected transistor and two-step post-processing for improved response stability, IEEE Trans. Inf. Forensics Security 15 (2020), 2798-2807. https://doi.org/10.1109/TIFS.2020.2976623
- U. Ruhrmair, S. Devadas, and F. Koushanfar, Security based on physical unclonability and disorder, Introduction to Hardware Security and Trust, Springer, New York, NY, USA, 2012, pp. 65-102. https://doi.org/10.1007/978-1-4419-8080-9_4
- C. Herder, M. Yu, F. Koushanfar, and S. Devadas, Physical unclonable functions and applications: A tutorial, Proc. IEEE 102 (2014), no. 8, 1126-1141. https://doi.org/10.1109/JPROC.2014.2320516
- M. D. Yu and S. Devadas, Secure and robust error correction for physical unclonable functions, IEEE Design Test Comput. 27 (2010), no. 1, 48-65. https://doi.org/10.1109/MDT.2010.25
- A. Maiti, J. Casarona, L. McHale, and P. Schaumont, A large scale characterization of RO-PUF, (IEEE International Symposium on Hardware-Oriented Security and Trust, Anaheim, CA, USA), 2010, pp. 94-99. https://doi.org/10.1109/HST.2010.5513108
- A. Cherkaoui, L. Bossuet, and C. Marchand, Design, evaluation, and optimization of physical unclonable functions based on transient effect ring oscillators, IEEE Trans. Inf. Forensics Security 11 (2016), no. 6, 2191-1305. https://doi.org/10.1109/TIFS.2016.2524666
- Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, Quantitative and statistical performance evaluation of arbiter physical unclonable functions on FPGA, (International conference on reconfigurable computing and FPGAs, Quintana Roo, Mexico), 2010, pp. 298-303. https://doi.org/10.1109/ReConFigure2010.24
- B. Li, S. Chen, and F. Dan, Design and implementation of an improved MA-APUF with higer uniqueness and security, ETRI J. 42 (2019), no. 2, 205-216. https://doi.org/10.4218/etrij.2019-0081
- G.-J. Schrijen and V. Leest, Comparative analysis of SRAM memories used as PUF primitives, (Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany), 2012, pp. 1-14. https://doi.org/10.1109/DATE.2012.6176696
- Q. Tang, C. Zhou, W. Choi, G. Kang, J. Park, K. K. Parhi, and C. H. Kim, A DRAM based physical unclonable function capable of generating >1032 challenge response pairs per 1Kbit array for secure chip authentication, (IEEE Custom Integrated Circuits Conference, Austin, TX, USA), 2017, pp. 1-4. https://doi.org/10.1109/CICC.2017.7993610
- S. Sakib, M. T. Rahman, A. Milenkovic, and B. Ray, Flash memory based physical unclonable function, (Proc. SoutheastCon, Huntsville, AL, USA), 2019, pp. 1-6. https://doi.org/10.1109/SoutheastCon42311.2019.9020567
- A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem, S. Gabmeyer, S. Katzenbeisser, and J. Szefer, Decay-based DRAM PUFs in commodity devices, IEEE Trans. Dependable and Secure Compt. 16 (2019), no. 3, 462-475. https://doi.org/10.1109/TDSC.2018.2822298
- I. Kumari, M. Oh, Y. Kang, and D. Choi, Rapid run-time DRAM PUF based on bit-flip position for secure IoT devices, (Proc. SENSORS, New Delhi, India), 2018. https://doi.org/10.1109/ICSENS.2018.8589608
- S. Jia, L. Xia, Z. Wang, J. Lin, G. Zhang, and Y. Ji, Extracting robust keys from NAND flash physical unclonable functions, Information Security, ISC 2015, J. Lopez and C. Mitchell, (eds.), Lecture Notes in Computer Science, Vol. 9290, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-23318-5_24
- M. Kim, D. Moon, S. Yoo, S. Lee, and Y. Choi, Investigation of physically unclonable functions using flash memory for integrated circuit authentication, IEEE Trans. Nanotechnology 14 (2015), no. 2, 384-389. https://doi.org/10.1109/TNANO.2015.2397956
- NIST Special publication (SP) 800-90B, Recommandation for the entropy sources used for random bit generation, 2018. https://doi.org/10.6028/NIST.SP.800-90B
- B. Sunar, W. J. Martin, and D. R. Stinson, A provably secure true random number generator with built-in tolerance to active attacks, IEEE Trans. Computers 56 (2007), no. 1, 109-119. https://doi.org/10.1109/TC.2007.250627
- R. Bez, E. Camerlenthgi, A. Modelli, and A. Visconti, Introduction to Flash memory, Proc. IEEE 91 (2003), no. 4, 489-502. https://doi.org/10.1109/JPROC.2003.811702
- B. Skoric, A trivial debiasing scheme for helper data systems, 2016. Cryptology ePrint ARchive, Report 2016/241.
- R. Maes, V. Leest, E. Sluis, and F. Willems, Secure key generation from biased PUFs, (International Workshop on Cryptographic Hardware and Embedded Systems, Saint-Malo, France), 2015, pp. 517-534.
- M. Suzuki, R. Ueno, N. Homma, and T. Aoki, Quaternary debiasing for physical unclonable functions, (IEEE 48th International Symposium on Multiple-Valued Logic, Linz, Austria), 2018, pp. 7-12. https://doi.org/10.1109/ISMVL.2018.00010
- S. H. Kwok, Y. L. Ee, G. Chew, K. Zheng, K. Khoo, and C. H. Tan, A comparison of post-processing techniques for biased random number generators, (International Workshop on Information Security Theory and Practices), 2011, pp. 175-190.
- Micron Serial NOR Flash Memory (MT25QL512), 2019. Available: https://www.micron.com/products/nor-flash/serial-nor-flash/part-catalog/mt25ql512abb1ew9-0sit
- GigaDevice Flash Memory Device (GD25B256E), 2020. Available: https://www.gigadevice.com/flash-memory/gd25b256e
- S. Puchinger, S. Muelich, M. Bossert, M. Hiller, and G. Sigl, On error correction for physical unclonable functions, (10th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany), 2015, pp. 1-6.
- S. Muelich and M. Bossert, Applying convolutional codes to key extraction using ring oscillator PUFs, (Workshop on Optimal Codes and Related Topics, Sofia, Bulgaria), 2017, pp. 98-103.