• 제목/요약/키워드: Response history analysis

검색결과 802건 처리시간 0.027초

Residual Vector를 이용한 시간이력해석의 잔여모드 응답 고려 방법 (Consideration of residual mode response in time history analysis using residual vector)

  • 변창호;이한걸;김정용
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.137-144
    • /
    • 2021
  • The mode superposition time history analysis method is commonly used in a seismic analysis. The maximum response in the time history analysis can be derived by combining the responses of individual modes. The residual mode response is the response of the modes which are not considered in the time history analysis. In this paper, the residual vector method to consider the residual mode response in the time history analysis is introduced and evaluated. Seismic analyses for a sample structure model and a reactor vessel model are performed to evaluate the residual vector method. The analysis results show that residual mode response is well calculated when the residual vector method is used. It is confirmed that the residual vector method is useful and acceptable to consider the residual mode response in a seismic analysis of the nuclear power plant equipment.

응답스펙트럼에 의한 트러스 구조물의 내진해석 (Seismic Analysis of 3D-Truss by Response Spectrum)

  • 안주옥;이승재
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF

응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석 (The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method)

  • 이동근;김태호
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.169-178
    • /
    • 1998
  • 일반적으로 응답스펙트럼 해석법은 지지해석에 널리 쓰이고 있지만 동적하중에 의한 구조물의 진동해석은 주로 시간이력해석에 의존한다. 그러나 시간이력해석법은 응답스펙트럼 해석법에 비하여 복잡하며 어렵고 또한 시간이 많이 소요된다 따라서본 논문에서는 응답스펙트럼 해석법을 이용하여 구조물의 연직 최대 응답을 예상하는 방법을 연구하였다 이를 위하여 우선 지지해석에서 응답스펙트럼 해석법과 시간이력해석법에 의하여 구조물의 최대응답을 구하여 비교하였으며 동적하중에 대한 응답스펙트럼 해석을 수행하는 과정을 나타내었다. 마지막으로 제안된 방법과 시간이력해석에 의한 결과를 비교하였다.

  • PDF

스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성 (Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions)

  • 김정한;김민규;최인길
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용 (Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures)

  • 이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections

  • Hadianfard, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.675-689
    • /
    • 2012
  • Most connections of steel structures exhibit flexible behaviour under cyclic loading. The flexible connections can be assumed as nonlinear rotational springs attached to the ends of each beam. The nonlinear behaviour of the connections can be considered by suitable moment-rotation relationship. Time-history analysis by direct integration method can be used as a powerful technique to determine the nonlinear dynamic response of the structure. In conventional numerical integration, the response is evaluated for a series of short time increments. The limitations on the size of time intervals can be removed by using Chen and Robinson improved time history analysis method, in which the integrated displacements are used as the new variables in integrated equation of motion. The proposed method permits longer time intervals and reduces the computational works. In this paper the nonlinearity behaviour of the structure is summarized on the connections, and the step by step improved time-history analysis is used to calculate the dynamic response of the structure. Several numerical calculations which indicate the applicability and advantages of the proposed methodology are presented. These calculations illustrate the importance of the effect of the nonlinear behaviour of the flexible connections in the calculation of the dynamic response of steel frames.

Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake

  • Zhang, Jun-Feng;Wang, Yuan-Hao;Li, Jie;Zhao, Lin
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.405-415
    • /
    • 2021
  • Following the dynamic property analysis and elaboration, linear response spectrum analysis (RSA) and response history analysis (RHA) were conducted on a representative hyperbolic cooling towers (HCT) in present study. The seismic responses in tower shell were illustrated in detail, including the internal force amplitude, modal contribution, influence from damping ratio, comparison of results got from RSA and RHA and especially the latitude distributions of internal forces. The results show that the eigenmodes could be classified in a new method into four types according to their mode shapes and only the lateral bending modes and vertical stretching modes are meaningful for horizontal and vertical earthquake correspondingly. The bending modes and seismic deformation display the same feature which is global lateral bending accompanied by minute circular flow displacement of section. This feature also decides the latitude distributions of internal forces as sine or cosine. Moreover, the following method is also proposed for approximate estimation of internal force amplitudes without time-consuming response history analysis: getting the response spectrums of the selected ground accelerations and then comparing values of response spectrums at the natural period of first lateral bending mode because it is always prime dominant for horizontal seismic responses.

지진 데이터 생성 및 격납건물 시간이력 해석 (Generation of Simulated Earthquakes and Time-history Dynamic Analysis of Containment Building)

  • 배용귀;이성로
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.608-612
    • /
    • 2003
  • In the seismic response analysis, the artificial earthquake time history is generated to do the exact seismic analysis for the complex structural system like as containment building. In the present study the several simulated earthquakes are generated by use of SIMQKE program and the time history dynamic analysis of containment building is performed. Also, the seismic responses are statistically analyzed. The seismic response uncertainty arisen from the simulation of earthquakes is one of major uncertainties and the statistical description is needed to account for the random nature of earthquake.

  • PDF

라이즈 스팬 비에 의한 200m 허니컴 래티스 돔의 동적 응답 분석 (Dynamic Response Analysis of 200m Honeycomb Lattice Domes by Rise Span Ratio)

  • 박강근;정미자
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.51-61
    • /
    • 2019
  • The objective of this study is to analysis the seismic response of 200m spanned honeycomb lattice domes under horizontal and up-down ground motion of El Centro earthquake. For the analysis of seismic response of the honeycomb lattice domes by rise/span ratio, the time history analysis is used for the estimation of the dynamic response. The low rise lattice dome is less deformed and less stressed than the high rise lattice dome for the earthquake ground motion. The 3-dimensional earthquake response is not significantly different the dynamic response of one directional ground motion. The earthquake response of domes with LRB isolation system is significantly reduced for the asymmetric vertical deformation and the horizontal and vertical accelerations.