• Title/Summary/Keyword: Response Surface Model (RSM)

Search Result 368, Processing Time 3 seconds

Ram Accelerator Optimization Using the Response Surface Method (반응면 기법을 이용한 램 가속기 최적설계에 관한 연구)

  • Jeon Yong-Hee;Jeon Kwon-Su;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.159-165
    • /
    • 2000
  • In this paper, numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected at design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error to compared with analysis result is only $0.01\%$ and it is demonstrated that present method can be applied more practical design optimization problems with many design variables.

  • PDF

Optimization of Capsular Polysaccharide Production by Streptococcus pneumoniae Type 3

  • Jin, Sheng-De;Kim, Young-Min;Kang, Hee-Kyoung;Jung, Seung-Jin;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1374-1378
    • /
    • 2009
  • Response surface methodology (RSM) examining the effects of five-level-three-factors and their mutual interactions was utilized to optimize the fermentation conditions to enhance capsular polysaccharide (CPS) production of Streptococcus pneumoniae type 3. Twenty experiments conducted in an 8-l lab-scale fermentor were designed to assess fermentation pH, supplemented glucose concentration, and stirring rate. The predicted highest CPS production by the obtained optimization model equation was 256.14 mg/l at optimal conditions [pH 7.5, stirring rate 180 rpm, and supplemented glucose concentration 1% (w/v)]. The validity of the response model was confirmed by the good agreement between the predicted and experimental results. The maximum amount of CPS obtained was $255.03\pm2.23$ mg/l.

Adsorption Characterization of Cd by Coal Fly Ash Using Response Surface Methodology (RSM) (반응표면분석법을 이용한 석탄회에서의 Cd 흡착특성에 관한 연구)

  • An, Sangwoo;Choi, Jaeyoung;Cha, Minwhan;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • The batch experiments and response surface methodology (RSM) have been applied to the investigation of the cadmium (Cd) adsorption by coal fly ash (CFA). CFA having maximum Cd removal mass of 8.51 mg/g were calculated from Langmuir model. Cd removal reaction with different initial pH ranged from 4 to 9. When the initial pH was higher, Cd was removed more by adsorption and precipitation. These results suggest that the lower pH cause an increase of $H^+$ ion concentration which competed with Cd ions for exchange sites in CFA. Also, The Cd adsorption was mathematically described as a function of parameters initial Cd concentration ($X_1$), initial pH ($X_2$), and initial CFA mass ($X_3$) being modeled by use of the Box-Behnken methods. Empirical models were developed to describe relationship between the experimental variables and response. Statistical analysis indicates that tree factors ($X_1$, $X_2$, and $X_3$) on the linear term (main effects), and tree factors ($X_1X_2$, $X_1X_3$, and $X_2X_3$) on the non-linear term (Interaction effect; cross-product) had significant effects, respectively. In this case, the value of the adjusted determination coefficient (adjusted $R^2=0.9280$) was closed to 1, showing a high significance of the model. Statistical results showed the order of Cd removal at experimental factors to be initial initial pH > initial Cd concentration > initial CFA mass.

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments (실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

Optimum Design of Stator and Rotor Shape for Cogging Torque Reduction in Interior Permanent Magnet Synchronous Motors

  • Yu, Ju-Seong;Cho, Han-Wook;Choi, Jang-Young;Jang, Seok-Myeong;Lee, Sung-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.546-551
    • /
    • 2013
  • This paper deals with the optimum design of the stator and rotor shape of the interior permanent magnet synchronous motors (IPMSM) that are used in applications for automobiles. IPMSMs have the following advantages: high power, high torque, high efficiency, etc. However, cogging torque which causes noise and vibrations is generated at the same time. The optimum design of shape of a IPMSM was carried out with the aim of reducing cogging torque. Six variables which affect to the performance of a IPMSM are chosen. The main effect variables were determined and applied to the response surface methodology (RSM). When compared to the initial model using the finite elements method (FEM), the optimum model highly reduces the cogging torque and improves the total harmonics distortion (THD) of the back-electro motive force (EMF). A prototype of the designed model was manufactured and experimented on to verify the feasibility of the IPMSM.

Application of response surface methodology in pes/speek blend NF membrane for dyeing solution treatment

  • Lau, W.J.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.49-60
    • /
    • 2010
  • In this study, response surface methodology (RSM) was performed in NF membrane process to evaluate the separation efficiency of membrane in the removal of salt and reactive dye by varying different variables such as pressure, temperature, pH, dye concentration and salt concentration. The significant level of both the main effects and the interaction were observed by analysis of variance (ANOVA) approach. Based on the statistical analysis, the results have provided valuable information on the relationship between these variables and the performances of membrane. The rejection of salt was found to be greatly influenced by pressure, pH and salt concentration whereas the dye rejection was relatively constant in between 96.22 and 99.43% regardless of the changes in the variables. The water flux on the other hand was found to be affected by the pressure and salt concentration. It is also found that the model predictions were in good agreement with the experimental data, indicating the validity of these models in predicting membrane performances prior to the real filtration process.

Optimum Design of Transverse Flux Machine for High Contribution of Permanent Magnet to Torque Using Response Surface Methodology

  • Xie, Jia;Kang, Do-Hyun;Woo, Byung-Chul;Lee, Ji-Young;Sha, Zheng-Hui;Zhao, Sheng-Dun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.745-752
    • /
    • 2012
  • Transverse flux machine (TFM) has been proved to be very suitable for high-torque, low-speed, and direct-drive situation in industry. But the complex structures and costly permanent magnets (PMs) are two key limitations of its wide range of applications. This paper proposes a new claw pole TFM (ACPTFM) which features an assembled claw pole stator and using the lamination steels material to overcome the complex structures. By combining response surface methodology (RSM) with design of experiment, an optimum design method is put forward to improve the PM's contribution to the torque in order to save the PM's amount. The optimum design results demonstrate the validity of the proposed optimum design method and the optimized model. Eventually, the finite-element analysis (FEA) calculation method, which is used in the optimization process, is verified by the experiments in a prototype.

Optimization of Medium Composition for Production of the Antioxidant Substances by Bacillus polyfermenticus SCD Using Response Surface Methodology

  • Lee, Jang-Hyun;Chae, Mi-Seung;Choi, Gooi-Hun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.959-964
    • /
    • 2009
  • Production of the antioxidant substances by Bacillus polyfermenticus SCD was investigated using shake-flask fermentation. The one-factor-at-a-time method was first employed to determine the key ingredients for optimal medium composition, then further investigation of the medium composition was performed using response surface methodology (RSM). The antioxidant activity was measured using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays. After screening various elements, fructose, tryptone, and $MgSO_4\;7H_2O$ were chosen as the main factors for study in the statistical experimental design. Central composite design (CCD) was then used to determine the optimal concentrations of these 3 components. Under the proposed optimized medium containing 2.8% fructose, 1.34% tryptone, 0.015% $MgSO_4\;7H_2O$), 0.5% NaCl, and 0.25% $K_2HPO_4$, the model predicted an antioxidant activity of 80.5% ($R^2=0.9421$. The actual experimental results were in agreement with the prediction.