DOI QR코드

DOI QR Code

Optimization of Capsular Polysaccharide Production by Streptococcus pneumoniae Type 3

  • Jin, Sheng-De (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Young-Min (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kang, Hee-Kyoung (The Research Institute for Catalysis, Chonnam National University) ;
  • Jung, Seung-Jin (Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University) ;
  • Kim, Do-Man (School of Biological Sciences and Technology, Chonnam National University)
  • Published : 2009.11.30

Abstract

Response surface methodology (RSM) examining the effects of five-level-three-factors and their mutual interactions was utilized to optimize the fermentation conditions to enhance capsular polysaccharide (CPS) production of Streptococcus pneumoniae type 3. Twenty experiments conducted in an 8-l lab-scale fermentor were designed to assess fermentation pH, supplemented glucose concentration, and stirring rate. The predicted highest CPS production by the obtained optimization model equation was 256.14 mg/l at optimal conditions [pH 7.5, stirring rate 180 rpm, and supplemented glucose concentration 1% (w/v)]. The validity of the response model was confirmed by the good agreement between the predicted and experimental results. The maximum amount of CPS obtained was $255.03\pm2.23$ mg/l.

Keywords

References

  1. Arrecubieta, C., R. Lopez, and E. Garcia. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med. 184: 449-455 https://doi.org/10.1084/jem.184.2.449
  2. Ashipala, O. K. and Q. He. 2008. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresour. Technol. 99: 4112-4119 https://doi.org/10.1016/j.biortech.2007.09.029
  3. Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment of optimum conditions (with discussion). J. R. Aust. Hist. Soc. Series B 13: 1-45
  4. CDC. 1997. Prevention of pneumococcal disease: Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. 46: 1-24
  5. CDC. 2000. Preventing pneumococcal disease among infants and young children: Recommendations of the Adivisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. 49: 1-35
  6. Chakravarti, R. and V. Sahai. 2002. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Proc. Biochem. 38: 481-486 https://doi.org/10.1016/S0032-9592(02)00138-3
  7. David, H. B. and J. G. Holt. 1994. Bergey's Manual of Determinative Bacteriology, pp, 480-496. 9th Ed. Williams & Wilkins, Philadelphia, Pennsylvania
  8. Dillard, J. P. and J. Yother. 1991. Analysis of Streptococcus pneumoniae sequences cloned into Escherichia coli: Effect of promoter strength and transcription terminators. J. Bacteriol. 173: 5105-5109
  9. Dubois, M. A., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  10. Forsee, W. T., R. T. Cartee, and J. Yother. 2000. Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae. J. Biol. Chem. 275: 25972-25978 https://doi.org/10.1074/jbc.M002613200
  11. Gilbert, C., K. Robinson, R. W. F. Le Page, and J. M. Wells. 2000. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect. Immun. 68: 3251-3260 https://doi.org/10.1128/IAI.68.6.3251-3260.2000
  12. Kim, S. N., K. K. Min, S. H. Kim, I. H. Choi, S. H. Lee, S. N. Pyo, and D. K. Rhee. 1996. Optimization of culture conditions for production of pneumococcal capsular polysaccharide type 1. J. Microbiol. 34: 179-183
  13. Klein, J. O. 1981. The epidemiology of pneumococcal disease in infants and children. Rev. Infect. Dis. 3: 246-253 https://doi.org/10.1093/clinids/3.2.246
  14. Michael, R. W., C. P. Lawrence, L. K. Dennis, L. D. Jose, M. Francis, H. Kevin, and J. J. Harold. 1990. Imrnunogenicity in animals of a polysaccharide-protein conjugate vaccine against Type III Group B Streptococcus. J. Clin. Invest. 86: 1428-1433 https://doi.org/10.1172/JCI114858
  15. Myers, C. and A. Gervaix, 2007. Streptococcus pneumoniae bacteraemia in children. Int. J. Antimicrob. Agents 308: S24-S28
  16. Reeves, R. E. and W. F. Goebel. 1941. Chemoimmunological studies on the soluble specific substance of Pneumococcus. V. The structure of the type polysaccharide. J. Biol. Chem. 139: 511-519
  17. Suarez, N., L. F. Fraguas, E. Texeira, H. Massaldi, F. BatisatViera, and F. Ferreira. 2001. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography. Appl. Environ. Microbiol. 67: 969-971 https://doi.org/10.1128/AEM.67.2.969-971.2001
  18. WHO. 2007. Pneumococcal conjugate vaccine for childhood immunization - WHO position paper. Wkly. Epidemiol. 82: 93-104

Cited by

  1. Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites vol.6, pp.None, 2009, https://doi.org/10.1038/srep20488