• 제목/요약/키워드: Response Spectrum Acceleration

검색결과 248건 처리시간 0.027초

요구곡선 산정방법에 따른 능력스펙트럼법의 유효성 평가 및 비교 (Effect of Demand Spectrums on the Accuracy of Capacity Spectrum Method)

  • 김홍진;민경원;박민규
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.33-42
    • /
    • 2004
  • 비선형시스템을 등가의 선형시스템으로 치환하는 것은 해석이 간단하다는 매우 중요한 장점을 제공하지만 구조물의 실제 비선형거동을 정확하게 모델링하지 못하기 때문에 능력스펙트럼법의 정확도는 정확한 등가주기와 등가감쇠비의 산정과 구해진 등가감쇠비에 따른 탄성응답스펙트럼의 수정방법과 그에 따른 요구곡선의 산정에 영향을 받는다. 본 논문에서는 요구곡선의 산정방법에 따른 능력스펙트럼법의 정확성을 분석하였다. 이를 위해 ATC-40과 Euro Code에서 제안한 감소 계수 등의 유효성을 평가하였다. Newmark와 Hall의 수정계수에 기초로 한 ATC-40에서 주어진 감소 계수에 의해 구해진 가속도 응답에 비해 Euro Code에서 주어진 감소 계수를 이용하여 구한 가속도 응답이 실제 평균 응답에 보다 유사함을 알 수 있었다. 그리고 유사가속도 응답을 이용한 방법과 절대가속도 응답을 이용한 방법을 이용하여 요구곡선을 산정하여 능력스펙트럼법의 정확성을 검증해 보았다. 절대가속도 응답을 이용한 결과가 전반적으로 유사가속도 응답을 이용한 결과에 비해 커짐을 알 수 있었고, 능력스펙트럼법이 전반적으로 응답을 과소평가하는 경향이 있어서 이러한 큰 값을 주는 것이 좀 더 정확한 결과를 줌을 알 수 있었다. 하지만 탄성 최대 강도에 대한 항복 강도의 비가 커질수록 그리고 항복 후 강성비가 커질수록 이러한 결과의 차이는 거의 없어짐을 알 수 있었다.

구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상 (A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.

지반 종류별 응답스펙트럼 평가에 대한 비교 연구 (A Comparative Study on Evaluation of Response spectrum accounting for Soil Types)

  • 김선우;한상환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.433-438
    • /
    • 2001
  • The response spectrum has been widely used to differentiate the significant characteristics of earthquake ground motion and to evaluate the response of structures under ground shaking. Current design response spectrum is based on Seed, Ugas, and Lysmer's study. (1976) In this study, earthquake ground motion data sets adopted by Seed, Miranda, and Riddell is analyzed regards to soil types. And how earthquake data sets effected the design response spectrum is evaluated using acceleration-displacement response spectrum.

  • PDF

계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법 (Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra)

  • 지혜연;최다슬;김정한
    • 한국지진공학회논문집
    • /
    • 제25권1호
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

고진동수 지진동에 대한 원전 기기의 지진취약도 분석 (Seismic Fragility Analysis of NPP Components for High Frequency Ground Motions)

  • 최인길;서정문;전영선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.110-117
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large high frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

  • PDF

지진시 방콕지역의 지반운동에 대한 동력학적 연구 (Dynamic Analysis of Ground Motion During Earthquake in the Bangkok Area)

  • 김상환
    • 한국지반공학회지:지반
    • /
    • 제1권1호
    • /
    • pp.13-20
    • /
    • 1985
  • SHAKE 프로그램을 이용하여 연약지반으로 분포되어 있는 방콕지역에 대한 지진표답을 지표면의 가속도응답 스펙트럼과 최대 가속도로서 분석하였다. 기초암반의 최대 가속도와 부월주기가 증가됨에 따라 지표면의 최대 가속도는 증가되고 그 값은 0.3g 로 수관되었다. 아울러 지진응답 스펙트럼의 성질에 대해서도 설명되었다.

  • PDF

지진 관측데이터 기반 지반응답스펙트럼 추정 알고리즘 제안 및 평가 (Proposal and Evaluation of Ground Response Spectrum Estimation Algorithm based on Seismic Observation Data)

  • 안진희;정진우;홍유찬;박재봉;최형석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.13-22
    • /
    • 2019
  • 본 연구는 지진계측시스템이 설치되지 않은 중소형 교량의 지진손상 수준을 평가하기 위하여 대상 중소형 교량 인근에 위치한 지진관측소의 지진관측 데이터를 이용하여 대상 교량위치에서의 지반응답스펙트럼을 추정하기 위한 알고리즘을 제시하였다. 일반적으로 중소형 교량의 내진설계 및 성능평가는 동적해석법 중 응답스펙트럼해석법이 가장 널리 활용되고 있으므로 대상 중소형 교량에 대한 평가 지진력으로 지반응답스펙트럼을 적용할 수 있는 알고리즘을 제시하였으며, 제안된 알고리즘을 이용한 프로그램 알고리즘도 제안하고 제안된 알고리즘을 통하여 실제 지진계측데이터를 이용하여 특정 위치에서의 지반응답스펙트럼 추정 예를 나타내었다.

KBC 비구조요소 내진설계 하중 (KBC Seismic Design Force for Nonstructural Element)

  • 김대곤
    • 한국공간구조학회논문집
    • /
    • 제14권1호
    • /
    • pp.77-84
    • /
    • 2014
  • Simple 3, 10, and 30-story buildings with a nonstructural element which is located at roof or near the middle of the building height are selected. Based on 2009 Korean Building Code, the seismic design force applied at the nonstructural element is evaluated. Response spectrum analysis is conducted with the design response acceleration spectrum of 2009 Korean Building Code and the analytical response is compared with the seismic design force from the Code. Furthermore, an artificial earthquake based on Korean design response acceleration spectrum and the 50% intensity of El Centro earthquake, which can be considered as the maximum future earthquake possibly occurring in Korea, are selected to conduct time history analysis. When the period of the nonstructural element is shorter than 0.06 second or longer than that of the 1st period of each building, the Code equations of seismic design force for nonstructural element seems to be appropriate. However, the period of the nonstructural element is close to the one of the building's higher mode periods including the 1st period, seismic force of the nonstructural element might exceed the Code specified seismic design force.