• Title/Summary/Keyword: Response Spectrum

Search Result 1,242, Processing Time 0.028 seconds

Estimation of Earthquake Magnitude-Distance Combination Corresponding to Design Spectrum in Korean Building Code 2016 (우리나라 건축물 설계 스펙트럼에 상응하는 지진규모와 진앙거리의 추정)

  • Jeong, Gi Hyun;Lee, Han Seon;Hwang, Kyung Ran
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • In this study, to estimate the combination of earthquake magnitude ($M_w$) and distance (R) corresponding to the design spectrum defined in Korean Building Code (KBC) 2016, the response spectra predicted from the attenuation relationships with the variation of $M_w$ (5.0~7.0) and R (10~30km) are compared with the design spectrum in KBC 2016. Four attenuation relationships, which were developed based on local site characteristics and seismological parameters in Southern Korea and Eastern North America (ENA), are used. As a result, the scenario ground motions represented by the combinations of $M_w$ and R corresponding to the design spectrum for Seoul defined in KBC 2016 are estimated as (1) when R =10 km, $M_w=6.2{\sim}6.7$; (2) when R = 15 km, $M_w=6.5{\sim}6.9$; and (3) when R = 20 km, $M_w=6.7{\sim}7.1$.

Response of the Wave Spectrum to Turning Winds (풍향 변화에 대한 파랑 스펙트럼의 반응)

  • 윤종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.111-121
    • /
    • 1997
  • The spectral energy balance model is composed and the nonlinear interaction is approximated by the discrete interaction parameterization as in WAM model. The numerical results of durational limited growth test agree very well with those of the exact model, EXACT-NL. The response of a wave spectrum to a change in wind direction is investigated numerically for a sequence of direction changes 30$^{\circ}$ , 45$^{\circ}$ , 60$^{\circ}$ , 90$^{\circ}$ . The high frequency components relax more repidly to the new wind direction than the low frequency components and the relaxation process also depends on the wave age. For wind direction changes less than 60$^{\circ}$ , the coupling by nonlinear interaction is so strong that the secondary peak in input source distribution is counteracted by the negative lobe of the nonlinear interaction. For wind direction changes grater than 60$^{\circ}$ , a second independent wind-sea spectrum is generated in the new wind direction, while the old spectrum gradually decays as swell.

  • PDF

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Nonlinear Response Spectra of Artificial Earthquake Waves Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진파에 의한 비선형 응답 특성의 분석)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.63-71
    • /
    • 2006
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the nonlinear response spectra by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design spectra in the range of period from 0.02 to 10.0 seconds. The seismic response analysis is performed to examine the nonlinear response characteristics of SDOF system subjected to the simulated earthquake waves. It was concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Identification of Whipping Response using Wavelet Cross-Correlation (웨이블릿 교차상관관계를 이용한 변형체 선박의 휘핑 응답 식별)

  • Kim, Yooil;Kim, Jung-Hyun;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Identification of the whipping response out of the combined wave-vibration response of a flexible sea going vessel is one of the most interesting research topic from ship designer's point of view. In order to achieve this goal, a novel methodology based on the wavelet cross-correlation technique was proposed in this paper. The cross-correlation of the wavelet power spectrum averaged across the frequency axis was introduced to check the similarity between the combined wave-vibration response and impulse response. The calculated cross-correlation of the wavelet power spectrum was normalized by the auto-correlation of the each spectrum with zero time lag, eventually providing the cross-correlation coefficient that stays between 0 and 1, precisely indicating the existence of the impulse response buried in the combined wave-vibration response. Additionally, the weight function was introduced while calculating the cross-correlation of the two spectrums in order to filter out the signal of lower frequency so that the accuracy of the similarity check becomes as high as possible. The validity of the proposed methodology was checked through the application to the artificially generated ideal combined wave-vibration signal, together with the more realistic signal obtained by running 3D hydroelasticity program WISH-Flex. The correspondence of the identified whipping instances between the results, one from the proposed method and the other from the calculated slamming modal force, was excellent.

The Response Characteristics of Approximate Nonlinear Methods with RC Dual System (이중골조에 대한 비선형 약산법들의 응답특성)

  • Nam Young-Woo;Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF

Behavior Factor of a Steel Box Bridge with Single Column Piers (단주교각 강박스교량의 거동계수)

  • 박준봉;김종수;국승규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.228-235
    • /
    • 2002
  • As the response spectrum method generally used in the earthquake resistant design is a linear method, the nonlinear behavior of a structure is to be reflected with a specific factor. Such factors are provided in the "Design Criteria for Roadwaybridges"as response modification factors and in the Eurocode 8, Part 2 as behavior factors. In this study a 5-span steel box bridge with single column piers is selected and the behavior factor is determined. The linear time history analyses are carried out with a simple linear model, where the nonlinear behavior of piers leading to the ductile failure mechanism is considered as predetermined characteristic curves.

  • PDF

Effect of Equivalent SDOF Methods for Seismic Evaluation of Bridge Structures (교량구조물의 지진응답에 대한 등가단자유도 방법의 영향)

  • Nam, Wang-Hyun;Song, Jong-Keol;Chung, Yeong-Hwa
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.316-323
    • /
    • 2005
  • The capacity spectrum method (CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom (MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures be calculated. In this study to calculate the equivalent response of MDOF system, equivalent responses are obtained by the using Song method, N2 method and Calvi method. Also, these are applied the CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated.

  • PDF

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.