• Title/Summary/Keyword: Response Spectrum

Search Result 1,241, Processing Time 0.033 seconds

The Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능)

  • 정지만;장승필;인성빈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.189-196
    • /
    • 2002
  • The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

  • PDF

Firing Shock Measurement and Shock Response Spectrum Analysis of Small Arms (소구경 화기의 사격충격 측정 및 충격응답스펙트럼 분석)

  • Lee, Joon-Ho;Choe, Eui-Jung;Yoon, Joo-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.588-593
    • /
    • 2012
  • Nowadays, various forms of electro-optical rifle scope have been developed and used in order to enhance the accuracy of small arms. However, firing shock acceleration has characteristics of pyroshock having a big acceleration value with very short duration time, which the electro-optical scopes should be designed to sustain. In this paper, the firing shock acceleration, which is transmitted to the electro-optical scope, was measured and SRS (Shock Response Spectrum) analysis was performed by using the measured firing shock acceleration. Furthermore, a shock test condition using a drop-table shock tester, which can simulate the actual firing shock acceleration, was devised. The devised shock test condition will be utilized to test the electro-optical scope itself before attaching it to the small arms.

  • PDF

Seismic Analysis of Power Plant Piping System (발전소 배관계의 내진해석)

  • Kim, Jeong-Hyun;Lee, Young-Shin;Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.480-485
    • /
    • 2011
  • In this study, the seismic analysis of power plant piping system was performed using finite element model. This study was performed by ANSYS 12.1. For qualification of power plant piping system, the response spectrum analysis was performed using the given operating basis earthquake(OBE) and safe shutdown earthquake(SSE) floor response spectrum. The maximum stresses of power plant piping system were 166 MPa under OBE condition and 281 MPa under SSE condition. Thus, it can shown that the structural integrity of tpower plant piping system has a stable structure for seismic load conditions.

  • PDF

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

Analysis of Gamma-ray Spectrum and Assessment of Corresponding Exposure Rate by Means of Response Matrix Method (Response Matrix에 의한 감마선(線) Spectrum 및 그 조사선량(照射線量) 해석(解析))

  • Kim, Seong-Kwan;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.3-14
    • /
    • 1986
  • A stud has been carried out for figuring out real photon spectrum from an observed gamma-ray spectrum by means of response matrix method, which is known one of the relatively convenient method for the estimation of exposure rate of a complex gamma ray field in comparison with graphical analysis and least square fitting of the measured spectrum. A 3'${\times}$3' cylindrical Nal(T1) scintillation detector in association with multichannel pulse height analyzer and six reference gamma ray sources covering the photon energy range of 0.05 to 2.0 MeV were used. In dividing the energy region for the construction of response matrix, two different approaches were attempted. One is dividing the entire energy region of interest into 20 bins, one of which corresponds to a width of 0.1 MeV to form $20{\times}20$ matrix, and another is dividing the 2 MeV region into 14 bins to form $14{\times}14$ matrix consists of $0.1(MeV)^{1/2}$ intervals assuming the resolution of the detector is dependent on square root of the incident photon energy. Inversion of thus constructed matrices was performed by a computor(P-E8/32) using the program attached to the end of this paper. The resultant exposure rates obtained by this method were in good agreement, within 10% with those calculated by ordinary formula widely used for a gamma-ray field of known energy and flux. It is concluded that the photen flux obtained by the response matrix constructed under the assumption of $E^{1/2}$ dependence is more realistic than that obtained by the matrix consist of identical energy bins in dosimetrical point of view.

  • PDF

A Study on the Evaluation of Melon Maturity Using Acoustic Response (음파반응을 이용한 멜론의 숙도 평가에 관한 연구)

  • Choi W. K.;Choi K. H.;Lee K. J.;Choi D. S.;Kang S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.38-44
    • /
    • 2005
  • In this study, the acoustic response technique was applied to evaluate the maturity of melon nondestructively. The acoustic response signals through melon were obtained by microphone and signal conditioner with the lapse of days after fruit set. The acoustic parameters such as resonant frequencies and the spectrum energy ratio were analyzed. To investigate the relation between acoustic parameters and firmness of melon, the compression test was performed. Three resonant frequencies representing f1, f2 and f3 were 150 to 250 Hz, 300 to 400 Hz, and 450 to 550 Hz, respectively. The resonant frequencies were shifted to the lower frequencies and the magnitude of spectrum decreased as the maturity of melon increased. Some significant correlations were found between melon firmness and the spectrum energy ratio in some frequency ranges. It is possible to estimate the maturity of melon by acoustic response technique.

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

A Study on the Shock Analysis of the Multi-Function Console According to the Shock Response Spectrum Requirements of the Elastic Platform (탄성플랫폼 충격응답 스펙트럼 기준에 따른 다기능콘솔 충격해석 연구)

  • Park, Jae Hoon;Kim, Won Hyung;Kim, Hyun Sil;Choi, Young Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.805-811
    • /
    • 2016
  • Prior to installation in a navy ship, shipboard equipment should be qualified by shock test requirements. The multi-function console mounted on the elastic platform of the ship should also withstand given shock loads. In this study, both real shock test methods, as well as numerical computer simulations using the finite element method were used to verify structural durability under shock load conditions. First, we used domestic test facilities to perform possible shock tests, including an impact hammer test, a drop table test and a shaker shock test. Full model tests satisfying the shock response spectrum level were performed. Thereafter, an analytical model of the complex console structure was built by the finite element method. Finally, numerical results were verified by modal test results of the real product and an FEA analysis was also performed with a full model transient response analysis.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.