• Title/Summary/Keyword: Response Limits

Search Result 344, Processing Time 0.033 seconds

On the Evaluation of the dynamic Safety of the Ship's Cargo at Sea (항해중 선박 적재화물의 동적 안정성 평가에 관한 연구)

  • 김철승;김순갑
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • One of the most important missons that are imposed on merchant ship at sea is to accomplish the safe transportation of cargo loaded. Recently, a study on the seakeeping performance has been carried out on the development of evaluation system related to the synthetic safety of a ship at sea. The seakeeping performance is the ship's ability sailing at, and executing its misson against adverse environmental factors successfully and safely. Until now, however, there has not been any method of quantitative evaluation on the dynamic safety of the ship's cargo loaded. In this regards, this paper has introduced the evaluation method of dynamic safety of the ship's cargo. In order to evaluate the dynamic safety of cargo, the vertical and lateral acceleration which causes the collapse, racking and local structure failure of cargo was adopted as the evaluation factors in the ship's motions. The response amplitude of ship's motions in regular waves is manipulated by NSM (New Strip Method) on a given 2,700 TEU full container vessel under the wind forces of 7, 8 and 9 Beaufort scale. Each response of ship's motions induced by NSM was applied to short-crested irregular waves for stochastic process on evaluation factors and then vertical and lateral acceleration of each cargo was compared with significant amplitude of each acceleration. A representative dangerous factor was determined by comparing permissible values of stacking and racking forces occurred typically to the vertical and transverse directions with the container strength required on ISO 1496 at the positions of forecastle, poop and ship's midship respectively. Through the occurrence probability of the determined factor by Rayleigh's probability density function, the dangerousness which limits loads on container's side wall as an evaluation was applied in judging of the danger of the ship's cargo loaded.

  • PDF

Evaluation and Facilitation of the Korean Smart Grid Market (국내 전력부문의 스마트그리드 시장의 현주소와 활성화 방안)

  • Kim, Ji-Hyun;Lee, Suk-Jun;Kim, Ki-Yoon;Jeong, Suk-Jae
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.37-52
    • /
    • 2013
  • Prior to full-scale implementation of smart grid, the Korean government is conducting a smart grid testbed in Jeju island. However, the participants of the ongoing program are skeptical about the success of the expansion of smart grid. The concern rises from various reasons; the limits of the Korean electricity market mainly led by both the government and KEPCO, high stability and reliability of the existing electricity grid, insufficient utilization of renewable energy, and public fear of raised electricity bills. Five key issues in regards to facilitating the Korean smart grid market are extracted and evaluated. The issues are conflict of interest among participants, the effect of introducing real-time pricing, lack of customer participation of demand response, and absence of business models.

Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model

  • Zhang, Jing;Au, Francis T.K.;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.157-173
    • /
    • 2020
  • In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.

Physiological Response of Panax Ginseng to Tcmpcrature II. Leaf physiology, soil temperature, air temperature, growth of pathogene (인삼의 온도에 대한 생리반응 II. 엽의 생리, 지온, 기온, 병환의 생육)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.104-120
    • /
    • 1980
  • The effects of temperature on transpiration, chlorophyll content, frequency and aperture of stomata, and leaf temperature of Panax ginseng were reviewed. Temperature changes of soil and air under spade roof were also reviewed. Growth responses of responses of ginseng plant at various temperature were assessed in relation to suseptibillity of ginseng plants. Reasonable management of ginseng fields was suggested based on the response of ginseng to various temperatures. Stomata frequency may be increased under high temperature during leaf$.$growing stage. Stomata aperture increased by high temperature but the increase of both frequency and aperture appears not enough for transpiration to overcome high temperature encountered during summer in most fields. Serial high temperature disorder, i.e high leaf temperature, chlorophyll loss, inhibition of photosynthesis, increased respiration and wilting might be alleviated by high humidity and abundant water supply to leaf. High air temperature which limits light transmission rate inside the shade roof, induces high soil temperature(optimum soil temperature 16∼18$^{\circ}C$) and both(especially the latter) are the principal factors to increase alternaria blight, anthracnose, early leaf fall, root rot and high missing rate of plant resulting in poor yield. High temperature disorder was lessen by abundant soil water(optimum 17∼21%) and could be decreased by lowering the content of availability of phosphorus and nitrogen in soil consequently resulting in less activity of microorganisms. Repeated plowing of fields during preparation seems to be effective for sterilization of pathogenic microoganisms by high soil temperature only on surface of soils. Low temperature damage appeared at thowing of soils and emergence stage of ginseng but reports were limited. Most limiting factor of yield appeared as physiological disorder and high pathogen activity due to high temperature during summer(about three months).

  • PDF

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF

A Study on the Analysis of the Characteristics of the Real-time Behavior Space Design - Focused on the Works of onl and NOX - (물리구축환경의 지능적 부활로서의 실시간 행태 공간의 특성 분석 - onl과 NOX의 작품을 중심으로 -)

  • Lee Hanna;Park Hyun-Ok
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.4 s.51
    • /
    • pp.19-26
    • /
    • 2005
  • Digital technology continually makes a space evolves. The real-time behavior design communicates the data with the situation of circumference of the space(visitors moving, interior and exterior situations). The space form was changed because it interfaces in real time. The purpose of this study was finding out the characteristics of real-time behavior space design through the analysis of space formative languages, sensorium, S-R and material. This study will be the one of basic references for the digital space design. The boundary of this study set limits to the works of digital space designer who applies the real-time exchanging data to their design among the digital space design works from 1996 to 2004. But it excepted from the real-time behavior space in virtual realty. Therefore, the objects of this study were the works of onl and NOX(paraSITE, Trans-port 2001, Muscle, MotormeCCa, Handdrawspace, Saltwater Pavilion, Son-O-House, H2O Expo). The method was the contents analysis of space formative languages(Greg Lynn's ten space formative languages; bleb, blob, branch, flower, fold, lattice, teeth, shred, skins and strand), sensorium, S-R and material. The results of the study are as follows: 1) The organizational elements; Space formative languages(bleb, blob, fold, shred, skins, strand), stimulation(Human Participation, Human Moving, Weather Conditions), and response(Spatial Moving, Sound Pattern, Lighting Pattern, color Pattern, Activating Particles, Moving Picture, Virtual Friend) 2) The material Use; Sound, lights, and network have been used in the space. Immaterial matter will be used the main material of space design in 21"'century, 3)The spatial types; formal changing of space, projecting immaterial elements, and changing the sound.

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Effect of Shading on Rice Growth Characteristics Under Different Temperature Conditions

  • Zun Phoo Wai;Min-Ji Lee;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Environmental factors play an important role in crop growth and development. In recent years, climate change has become a challenge that limits environmental factors. Light is an important environmental factor for photosynthesis in rice. In addition, temperature is one of the most important factors for rice production; thus, a 1℃ increase in temperature because of climate change can affect rice growth and development. Therefore, we investigated the effect of shading on the growth characteristics of rice under different temperature conditions from the vegetative stage to the flowering stage. Plants were grown at three different temperatures: 26℃/16℃ for 21℃, 29℃/19℃ for 24℃, and 22℃/32℃ for 27℃ in a phytotron. A 55% shade treatment was applied after 10 days of transplanting until the flowering stage. Plant height was not affected by the shading treatment. In the maximum tiller number response to shading, a lower tiller number and growth speed of tiller was found in the 27℃ condition. Among leaf characteristics, shading increased the flag leaf area, length, width, and effective leaf area; however, it decreased the leaf number on the main stem, especially at 27℃. In terms of stem characteristics, shading affected culm wall thickness in both varieties. Finally, regarding the panicle characteristics, lower panicle numbers, spikelet numbers per panicle, primary numbers, and secondary numbers per panicle were found under the shading treatment. Most of the desirable characteristics were affected by the shading treatment at 27℃. Overall, these results indicated that shading had a greater effect on rice plant growth at high temperature.

Optimization of Ultrasound-Assisted Pretreatment for Accelerating Rehydration of Adzuki Bean (Vigna angularis)

  • Hyengseop Kim;Changgeun Lee;Eunghee Kim;Youngje Jo;Jiyoon Park;Choongjin Ban;Seokwon Lim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.846-853
    • /
    • 2024
  • Adzuki bean (Vigna angularis), which provides plant-based proteins and functional substances, requires a long soaking time during processing, which limits its usefulness to industries and consumers. To improve this, ultrasonic treatment using high pressure and shear force was judged to be an appropriate pretreatment method. This study aimed to determine the optimal conditions of ultrasound treatment for the improved hydration of adzuki beans using the response surface methodology (RSM). Independent variables chosen to regulate the hydration process of the adzuki beans were the soaking time (2-14 h, X1), treatment intensity (150-750 W, X2), and treatment time (1-10 min, X3). Dependent variables chosen to assess the differences in the beans post-immersion were moisture content, water activity, and hardness. The optimal conditions for treatment deduced through RSM were a soaking time of 12.9 h, treatment intensity of 600 W, and treatment time of 8.65 min. In this optimal condition, the values predicted for the dependent variables were a moisture content of 58.32%, water activity of 0.9979 aw, and hardness of 14.63 N. Upon experimentation, the results obtained were a moisture content of 58.28 ± 0.56%, water activity of 0.9885 ± 0.0040 aw, and hardness of 13.01 ± 2.82 g, confirming results similar to the predicted values. Proper ultrasound treatment caused cracks in the hilum, which greatly affects the water absorption of adzuki beans, accelerating the rate of hydration. These results are expected to help determine economically efficient processing conditions for specific purposes, in addition to solving industrial problems associated with the low hydration rate of adzuki beans.