• Title/Summary/Keyword: Response Limits

Search Result 345, Processing Time 0.026 seconds

Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction (구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.

Developments in composite construction and cellular beams

  • Lawson, R.M.;Hicks, S.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.193-202
    • /
    • 2005
  • This paper describes recent developments in composite construction and their effect on codified design procedures in the UK. Areas of particular interest include: rules on shear connection, design of beams with web openings, serviceability limits, such as floor vibrations, and fire safe design. The design of cellular beams with regular circular openings now includes generalized rules for web-post buckling, and for the development of in-plane moment in the web-post for asymmetric sections. Closed solutions for the maximum shear force due to limits on web-post bending or buckling are presented. The fire resistance of cellular beams is also dependent on the temperature of the web-post, and for closely spaced openings. It is necessary to increase the thickness of fire protection to the web. For serviceability design of beams, deflection limits and natural frequency and response factor for vibration are presented. It may be necessary to use stricter limits for certain applications.

Seismic Response Analyses of the Structure-Soil System for the Evaluation of the Limits of the Site Coefficients (지반계수의 한계값 평가를 위한 구조물-지반체계에 대한 지진응답해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.67-77
    • /
    • 2007
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they take into account only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of the site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on the linear or nonlinear soil layers taking Into account the effects of the structure-soil interaction. Soil characteristics of site classes of A, B and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of the soil layer, Seismic analyses were performed with 12 weak or moderate earthquake records scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock located at 30m deep under the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of $F_{a}\;and\;F_{v}$ at the short period range and the period of 1 second are suggested including the effects of the structure-soil interaction, and new site coefficients for the KBC code are also suggested.

Research of Determining the Compressed Gauge Limit Compensating for Guage Error (계측기오차 보상을 위한 압축한계 설정에 관한 연구)

  • Lee, Jong-Seong;Ko, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.89-93
    • /
    • 2002
  • When testing products before shipment to the customer, quality characteristics are measured to decide whether or not their values are between the specification limits. Unfortunately, this testing procedure can lead to incorrect decisions because of gauge error. That is, good products can erroneously be qualified as bad, and bad products as good, and this has consequences for producer's and consumer's risk. In cases of such as this, the compressed gauge limit can be used to achieve the desired product quality level dictated by the manufacturer or the customer. A compressed gauge limit is a limit set by the manufacturer on a test gauge that is tighter than the specification limit established by the customer. The compressed gauge limits should be set at levels to achieve the defect levels desired by the customer and simultaneously minimize the loss of good product that is rejected due to errors in the gauges. In this article, the models for determining the defect levels and the losses obtained by adding compressed gauge limits will be developed. A response surface model approach is utilized which allows an optimal operating condition to be generated relatively easily.

  • PDF

Potentiometric Characteristics of Ion-Selective Electrodes Based on Upper-Rim Calix[4]crown Neutral Carrier

  • 강유라;오현준;이경문;차근식;남학현;백경수;임혜재
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.207-211
    • /
    • 1998
  • Potentiometric characteristics of DOS plasticized PVC-based membranes containing upper-rim calix[4]crown neutral carrier to various metal cations and protonated alkylamines have been examined. Although the calix[4]crown-based membrane electrodes exhibited substantial emf responses to alkali and alkaline earth metal cations, their high detection limits (- log[Cs+]=4.5) and sub-Nernstian response slopes (48 mV/pCs+) to the most selective cation, cesium, indicate that the metal cation complexing ability of calix[4]crown is much weaker than that of macrocyclic crown ethers. However, the calix[4]crown-based membrane electrodes exhibited near-Nernstian response slopes (56 mV/decade for hexylNH3+) with low detection limits (log[hexylNH3+]= - 6.7) to most alkylammonium ions compared to those of blank (DOS plasticized PVC membrane with no ionophore) or crown ether-based membranes. While the selectivity patterns of blank and crown ether-based membranes are determined primarily by the lipophilicity of alkylammonium ions, the membranes doped with calix[4]crown ionophore could effectively discriminate the steric shapes of nonpolar alkyl groups of alkylammonium ions.

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

Response spectrum analysis for regular base isolated buildings subjected to near fault ground motions

  • Moussa, Leblouba
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.527-543
    • /
    • 2012
  • This paper presents a response spectrum analysis procedure suitable for base isolated regular buildings subjected to near fault ground motions. This procedure is based on the fact that the isolation system may be treated separately since the superstructure behaves as a rigid body on well selected isolation systems. The base isolated building is decomposed into several single-degree of freedom systems, the first one having the total weight of the building is isolated while the remainder when superposed they replicate approximately the behavior of the superstructure. The response of the isolation system is governed by a response spectrum generated for a single isolated mass. The concept of the procedure and its application for the analysis of base isolated structures is illustrated with an example. The present analysis procedure is shown to be accurate enough for the preliminary design and overcomes the limits of applicability of the conventional linear response spectrum analysis.

Dose metrology: TLD/OSL dose accuracy and energy response performance

  • Omaima Essaad Belhaj;Hamid Boukhal;El Mahjoub Chakir;Meryeme Bellahsaouia;Siham Belhaj;Younes Sadeq;Mohammed Tazi;Tahar El Khoukhi;Maryam Hadouachi;Khaoula Laazouzi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.717-724
    • /
    • 2023
  • An essential step in evaluating and comparing the performance of two passive radiation dosimeter types, thermosluminescent (TLD) and optically stimulated luminescence (OSL), used by workers in environments with ionizing radiation for individual radiological monitoring and control of external exposure at various times (cumulative dose for 1 month), is to compare the measured dose accuracy, energy response, and coefficient of variation. In fact this performance study consists in determining the accuracy of both R(10) and R(0.07) which are considered as the ratios of the measured dose (Hp(10) or Hp(0.07)) to the delivered dose (Hp(10) or Hp(0.07)) for each photon energy. The validity of the results of this test is based on the acceptance limits of the ICRP and the international standard IEC-62387. The relative energy response used is normalized to the 137Cs 662 keV energy to find which energy response is closest to the ideal case, and the coefficient of variation that allows to determine the statistical fluctuation of the Hp(10) and Hp(0.07) doses. The results of the accuracy test for the OSL and TLD dosimeters are acceptable because they fall within the ICRP limits. For the energy response, the OSL performs better than the TLD for Hp(10) and Hp(0.07), and for the coefficient of variation, the OSL satisfies the requirements of ISO 62387 for both Hp(10) and Hp(0.07), while the TLD satisfies these requirements only for the measurement of Hp (0.07).

Response Characteristics of Human by Whole-body Vibration and Hand-arm Vibration (전신진동과 부분진동에 대한 인간의 응답특성)

  • 장호경
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 1994
  • In this paper, the vibration response characteristics of individual's subjective are studied to whole-body and hand-arm induced vibration. For defining limits of vibration exposure to human, experimental data are investigated in a set of vibration criteria specified in ISO Standard 2631. Instrumentation requirements for evaluation of the responses of humans to vibration according to these criteria are discribed.

  • PDF