• 제목/요약/키워드: Response Force Contribution Factor

검색결과 7건 처리시간 0.022초

변위 및 내력기여도계수를 이용한 정량적 변위 제어 (Direct Control of Displacement Using Displacement and Resistance Force Contribution Factor)

  • 김영민;김치경
    • 한국공간구조학회논문집
    • /
    • 제5권3호
    • /
    • pp.91-100
    • /
    • 2005
  • 본 연구는 구조물의 정량적 강성설계 기법 개발, 즉 부재 단위의 강성 재설계를 통한 전역 자유도 변위의 정량적 조절 기법개발을 궁극적 목적으로 한다. 이를 위하여 본 연구에서는 전역 자유도에 대한 부재의 변위기여도계수와 내력기여도계수를 유도하고, 이를 이용하여 특정 변위를 정량적으로 예측, 제어할 수 있도록 부재 강성과 특정 변위간의 상관식을 유도 제시하였다. 간단한 예제 구조물의 해석과 제안식 적용을 통한 변위 예측값 사이의 비교를 통하여 제안식을 검증하였다. 정정구조물의 경우 본 상관식은 정해로서, 이를 이용하여 폭정 변위를 원하는 목표치로 정확하게 제어할 수 있으며, 부정정구조물의 경우에도 부재 내력 재분배에 의한 오차가 발생하기는 함에도 불구하고 각 부재 강성과 특정 변위간의 상관성과 경향을 제시함으로써 매우 유용하게 활용될 수 있다. 본 연구에서 제안하는 정량적 변위 제어 기법은 강성설계가 전체 설계 결과를 지배하게 되는 대 공간구조물 또는 초고층건물의 설계 시 유용할 것으로 기대된다.

  • PDF

단위 가진을 활용한 브레이크 시스템 기여도 분석 (Contribution analysis of a brake system based on virtual unit-excitation)

  • 김찬중;권성진;김완수;이봉현;김현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.604-605
    • /
    • 2008
  • Modal participation factor (MPF) is a widely used in a mode-coupling squeal noise problem for finding the most sensitive component over a complex brake system in a vehicle using eigenvectors of sub-components. This methodology requires the problematic total response of system by the unstable squeal noise at a specific frequency as well as eigenvectors of each component belonging to brake system. In this paper, a unit-force response analysis is performed for intact total system to obtain eigenvectors of each component and then such data is directly used for the contribution analysis of a squeal noise problem. Since the eigenvectors of each component induced from virtual unit-excitation is most reliable owing to the intact boundary condition, it can be expected that the corresponding contribution analysis with MPF also provides a trustworthy result.

  • PDF

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

Analysis of cutting forces and roughness during hard turning of bearing steel

  • Bouziane, Abderrahim;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Keblouti, Ouahid;Belhadi, Salim
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.285-294
    • /
    • 2018
  • An experimental study has been carried out to analyze the effect of cutting parameters (cutting speed, feed and depth of cut) and tool nose radius on the surface roughness and the cutting force components during hard turning of the AISI 52100 (50 HRC) steel with a ceramic cutting tool. The tests have been conducted according to the methodology of planning experiments, based on an orthogonal plan of Taguchi (L27). By using the response surface methodology (RSM), the components of the cutting force and the roughness of the machined surface were modeled and the effects of the input parameters were analyzed statistically by ANOVA and RSM. The results show that the feed (f), the tool nose radius (r), the cutting speed (Vc), the interaction between feed and tool nose radius ($f{\times}r$) as well as that of the quadratic effect ($f^2$) all have significant effects on the surface roughness (Ra). The feed is the most influencing factor with a contribution of 47.31%. The components of the cutting force were strongly influenced by the depth of cut, followed by the advance with a lower degree. By comparing the experimental values with those predicted by the models of the cutting force components and the surface roughness, it appears that they are in very good correlation.

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

PCB Handler의 과도응답해석 및 충격계수 산출 연구 (A Study on the Transient Response and Impact Coefficient Calculation of PCB Handler)

  • 이병화;권순기;고만수
    • 디지털융복합연구
    • /
    • 제15권7호
    • /
    • pp.223-229
    • /
    • 2017
  • 유럽, 미국을 비롯한 일본 등 선진 업계에서는 오랜 기간의 시험을 거쳐 충격계수의 시험결과를 보유하고 있으며, 장비를 설계할 때 이를 적용하여 구조물의 안정성을 확보하고 있다. 그러나 국내 산업체의 실정으로는 실제 구조물이 받는 여러 가지 동적인 외력에 의한 영향을 시험을 통해 충격계수를 확보하기에는 많은 비용과 시간이 소요되기 때문에 선진업체에서 제공하는 충격계수를 활용하여 장비를 설계하고 있다. 본 논문에서는 유한요소해석 프로그램인 NX/NASTRAN을 이용하여 반도체 검사 장비인 PCB Handler의 정하중해석과 충격하중에 대한 과도응답 해석을 진행하고, 변위 결과를 비교하는 방법으로 충격계수를 산출하였다. 충격계수 산출 방법은 일본 구조 구격에서 사용하고 있는 방법을 적용하였으며, PCB Handler가 검사를 위해 급출발 또는 급정지 시 충격계수는 1.27로 산출되었다. 해석으로 얻어낸 충격계수는 향후 장비의 구조개선과 기존장비를 기반으로 제품 개발 시 사용할 수 있어 업계에 도움이 될 것으로 판단된다.