• Title/Summary/Keyword: Respiratory dust

Search Result 201, Processing Time 0.03 seconds

Early Prediction of Fine Dust Concentration in Seoul using Weather and Fine Dust Information (기상 및 미세먼지 정보를 활용한 서울시의 미세먼지 농도 조기 예측)

  • HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

Chronic Respiratory Symptoms and Associated Factors among Fruit and Vegetable Workers in Addis Ababa, Ethiopia: A Comparative Cross sectional Study

  • Mulualem Gete Feleke;Yidnekachew Alemu;Meaza Gezu Shentema;Samson Wakuma;Zerihun Emiru;Tesfaye Yitna Chichiabellu
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.287-294
    • /
    • 2023
  • Background: Fruit and vegetable market is an abundant source of bioaerosols. Exposure to organic and inorganic waste and long-term inhalation of bioaerosols during working hours leads to chronic respiratory symptoms. Hence, this study aimed to determine the prevalence of chronic respiratory symptoms and related factors among fruit and vegetable workers compared with the control group in Addis Ababa, Ethiopia. Methods and materials: A comparative cross-sectional study was conducted from 2020 to 2021. Data were entered in EpiData 3.1 and exported to Statistical Package for the Social Sciences (SPSS) version 25. Logistic regressions were computed to depict the data and related factors. The culture method was done to count and compare bacterial and fungal concentrations between fruit and vegetable workers and office workers. Results: In this study, the prevalence of chronic respiratory symptoms (PR = 2.87, 95% confidence interval [CI]: 1.772-4.66) was significantly higher among fruit and vegetable workers (46.7%) than controls (23.4%). Sex (adjusted odds ratio [AOR] = 2.11, 95% CI = 1.12-3.98), educational status (AOR = 1.34, 95% CI = 0.78-2.32), working hours per day (AOR = 3.91, 95% CI = 1.586-9.65), and working department (AOR = 3.20, 95% CI = 0.90-11.40) were associated with chronic respiratory symptoms. Bacterial and fungal concentrations were significantly higher in the air of the vegetable market (276 colony-forming unit) than the air in the workplace of controls (7 colony-forming unit). Conclusion: The fruit and vegetable market workers (greengrocers) had a higher prevalence of chronic respiratory symptoms relative to office workers. Respiratory protective devices should be given to deliver preventive measures.

New Era of Management Concept on Pulmonary Fibrosis with Revisiting Framework of Interstitial Lung Diseases

  • Azuma, Arata;Richeldi, Luca
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.3
    • /
    • pp.195-200
    • /
    • 2020
  • The disease concept of interstitial lung disease with idiopathic pulmonary fibrosis at its core has been relied on for many years depending on morphological classification. The separation of non-specific interstitial pneumonia with a relatively good prognosis from usual interstitial pneumonia is also based on the perception that morphology enables predict the prognosis. Beginning with dust-exposed lungs, initially, interstitial pneumonia is classified by anatomical pathology. Diagnostic imaging has dramatically improved the diagnostic technology for surviving patients through the introduction of high-resolution computed tomography scan. And now, with the introduction of therapeutics, the direction of diagnosis is turning. It can be broadly classified into to make known the importance of early diagnosis, and to understand the importance of predicting the speed of progression/deterioration of pathological conditions. For this reason, the insight of "early lesions" has been discussed. There are reports that the presence or absence of interstitial lung abnormalities affects the prognosis. Searching for a biomarker is another prognostic indicator search. However, as is the case with many chronic diseases, pathological conditions that progress linearly are extremely rare. Rather, it progresses while changing in response to environmental factors. In interstitial lung disease, deterioration of respiratory functions most closely reflect prognosis. Treatment is determined by combining dynamic indicators as faithful indicators of restrictive impairments. Reconsidering the history being classified under the disease concept, the need to reorganize treatment targets based on common pathological phenotype is under discussed. What is the disease concept? That aspect changes with the discussion of improving prognosis.

Source Profile of Road Dust for Statistical Apportionment Modeling in Seoul (통계 수용모델을 위한 서울시 도로변 화학성분 원인 프로파일)

  • Park, Da-Jeong;Han, Young-Ji;Lee, Ji-Yi;Lee, Kwang-Yul;Cho, In-Hwan;Park, Eun Ha;Yi, Seung-Muk;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • Sources related to road dust is one of the biggest sources, which is responsible for a large portion of emission. In particular, PM2.5 is a potential cause for respiratory diseases, thus it should be managed and a mitigation plan using results of statistical apportionment modeling such as chemical mass balance needs to be established. Recently, identifying sources of PM2.5 and analyzing the contribution of the road dust through a contribution assessment is required. Therefore, this study provides the chemical source profiles of PM2.5 using IC, GC/MS, OCEC, and XRF for both paved sidewalk and paved roadway collected at seven different sampling sites. As a result, for paved sidewalk, $NH{_4}^+$ (70%), $NO{_3}^-$ (12%), $PO{_4}^-$ (9%), and $SO{_4}^{2-}$ (9%) have been analyzed in PM2.5 mass. Major molecular marker such as Si has been indicated as $12.0{\pm}3.4%$ and $13.6{\pm}6.9%$ for paved sidewalk and roadway, respectively. PAHs such as Fluoranthene, Pyrene, Chrysene, and 1,3,5-Triphenylbenzene are suggested as molecular markers for road dust.

Symptoms and Behavior Change before and After the Asian Dust Events Among Indoor and Outdoor Workers (실내.외 근무자의 황사 전.후 증상 및 예방행동에 대한 연구)

  • Kim Jeong-Youn;Kim Byung-Mi;Kim Ok-Jin;Ha Eun-Hee;Seo Ju-Hui;Lee Bo-Eun;Park Hye-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.509-517
    • /
    • 2006
  • We investigated the change of symptoms and preventive behaviors before and after the Asian Dust events among indoor workers (teachers) and outdoor workers (taxi drivers and bus drivers). On February 2004, we recruited 195 taxi drivers, 135 bus drivers and 93 school teachers. Symptoms and behaviors related the Asian Dust events during 1 week were questioned by self administrated questionnaires. We surveyed pre-event and post-event. The symptom were not changed in bus drivers during the events. In taxi drivers and teachers,'Bad or smoky smell on the air' and 'eye congestion' symptoms were increased during the events. The preventive behaviors were decreased or not changed in taxi drivers and bus drivers. In teachers,'close the window','diminishing the outdoor activities', 'diminishing the going out', 'wearing the sunglasses', 'washing the eyes after going out'. This results suggest that the outdoor worker's guideline during the Asian dust eventsneeds to be developed.

Development of Wearable Device for Monitoring Working Environment in Pig House (양돈장 작업환경 모니터링을 위한 웨어러블 장비개발)

  • Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • Enclosed pig house are creating an environment with high concentrations of gas and dust. Poor conditions in pig farms reduce pig weight and increase disease and accidents for livestock workers. In the pig house, the high concentration of harmful gas may cause asphyxiation accidents to workers and chronic respiratory disease by long-term exposure. As pig farm workers have been aging and feminized, the damage to the health of the harsh environment is getting serious, and real-time monitoring is needed to prevent the damage. However, most of the measuring devices related to humidity, harmful gas, and fine dust except temperature sensors are exposed to high concentrations of gas and dust inside pig house and are difficult to withstand for a long time. The purpose of this study is to develop an wearable based device to monitor the hazardous environment exposed to workers working in pig farms. Based on the field monitoring and previous researches, the measurement range and basic specifications of the equipment were selected, and wearable based device was designed in terms of utilization, economic efficiency, size and communication performance. Selected H2S and NH3 sensors showed the average error of 5.3% comparing to standard gas concentrations. The measured data can be used to manage the working environment according to the worker's location and to obtain basic data for work safety warning.

A Study on Optimum Design of an Axial Cylcone structure using Response Surface Method (반응표면법을 활용한 축류형 사이클론 구조 최적화 설계에 관한 연구)

  • Cho, Jinill;Yun, Junho;Cho, Yeongkwang;Seok, Hyunho;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2021
  • Ultrafine dust, which is emitted from industrial factories or all kinds of vehicles, threatens the human's respiratory system and our environment. In this regard, separating airborne particles is essential to mitigate the severe problem. In this work, an axial cyclone for the effective technology of eliminating harmful dust is investigated by numerical simulation using Ansys 2020, Fluent R2. In addition, the optimized structure of the cyclone is constructed by means of multi objective optimization based on the response surface method which is a representative method to analyze the effect of design parameter on response variables. Among several design parameters, the modified length of the vortex finder and dust collector is a main point in promoting the performance of the axial cyclone. As a result, the optimized cyclone exhibits remarkable performance when compared to the original model, resulting in pressure drop of 307 Pa and separator efficiency of 98.5%.

Properties of Cement Matrix Using Vegetable Activated Carbon (식물성 활성탄을 활용한 시멘트 경화체의 특성)

  • Lee, Jae-Hoon;Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.138-139
    • /
    • 2020
  • With the rapid progress of industrialization, indoor air quality is a very important factor for modern people who spend most of their day indoors. The recent issue of fine dust and radon on the portal site's popularity search shows that interest in indoor air quality has increased. Fine dust causes respiratory diseases, and radon causes severe lung cancer. The new material was tested using plant activated carbon, palm activated carbon and bamboo activated carbon. Both palm activated carbon and bamboo activated carbon are porous materials and generate smooth physical adsorption. As a result of the experiment, both the activated carbon tends to gradually decrease in strength and fluidity as the replacement ratio increases. The reason for this is that both activated carbons have the property of absorbing moisture, so it is judged that the strength is lowered by absorbing moisture necessary for curing. In the case of fluidity, it is judged that the fluidity is reduced by absorbing the moisture required for the flow. In the future, if the problem of the color of the finished cured body is compensated, it will be possible to manufacture a functional finishing board to replace the existing interior finishing material.

  • PDF

Development of an air purification system using moss and evaluation of air purification capability for each moss (이끼를 활용한 공기정화 시스템 개발 및 이끼별 공기정화 능력 평가)

  • Ahn, DoHyun;Choi, Hyeunwoo;Lee, JongMin;Heo, SungPhil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • Fine dust enters the lungs or blood vessels through the respiratory tract through the air. Recently, due to the fine dust problem, the demand for air purifiers in Korea is also increasing rapidly. Moss is the oldest terrestrial plant, and it is known that it has the property of adsorbing and decomposing heavy metals and fine dust. To compare the effect of reducing fine dust between moss and the existing chemical filter (Hepa), a cube of 1 m3 was manufactured and the amount of fine dust reduction under a controlled environment was compared. Under the fine dust conditions, an umbrella moss filter, rat tail moss filter, feather moss filter, and silk moss filter were inserted for a total of 40 experiments, 10 times each in 4 different situations. The difference between the amount after 30 minutes was statistically significant for all filters. However, as a result of the test, it was confirmed that there was no statistically significant difference between filters for fine dust, mixed gas, CO2, and O2. In particular, it was confirmed that the previously claimed effect of oxygen generation was almost nonexistent. Through this result, it was confirmed that the reduction of fine dust is effective regardless of the species view of moss, and it is expected to replace or supplement the chemical filter of the existing air purifier through future improvement.