• Title/Summary/Keyword: Respiratory chain complex

Search Result 40, Processing Time 0.026 seconds

An Association between Mitochondrial Enzyme Activity and Hearing Loss in Patients with Chronic Renal Failure (만성 신부전증 환자에서 미토콘드리아 활성과 청력손실과의 연관성)

  • Kim, Eun-Sook;Ahn, Seon-Ho;Kim, Shin-Moo;So, Hong-Seob;Park, Rae-Kil
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.218-223
    • /
    • 2006
  • Sensorineural hearing loss is frequently found in patients with chronic renal failure (CRF). There have been many efforts to elucidate the etiologic factors of hearing loss in patients with CRF. However, there was not any clear identified cause of hearing loss. This study was undertaken to evaluate the activity of mitochondrial respiratory chain (MRC) in CRF patients with hearing impairment. To determine MRC activity, peripheral blood cells were obtained from CRF patients with hearing impairment receiving dialysis and normal subjects without any hearing problems. MRC activity of complex I and complex III was measured by the Trounces method. In MRC activities between the normal subjects group and CRF patients with hearing problems, the complex I and III activities of CRF patients with hearing problems were 63% and 85% compared with normal subjects (p<0.01). These results suggest that the activity of MRC may be implicated in the underlying mechanism of the hearing impairment in CRF patients, through mitochondrial DNA mutations at MRC complex I region with a decrement of MRC activity.

  • PDF

Development of an Automatic PCR System Combined with Magnetic Bead-based Viral RNA Concentration and Extraction

  • MinJi Choi;Won Chang Cho;Seung Wook Chung;Daehong Kim;Il-Hoon Cho
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.363-370
    • /
    • 2023
  • Human respiratory viral infections such as COVID-19 are highly contagious, so continuous management of airborne viruses is essential. In particular, indoor air monitoring is necessary because the risk of infection increases in poorly ventilated indoors. However, the current method of detecting airborne viruses requires a lot of time from sample collection to confirmation of results. In this study, we proposed a system that can monitor airborne viruses in real time to solve the deficiency of the present method. Air samples were collected in liquid form through a bio sampler, in which case the virus is present in low concentrations. To detect viruses from low-concentration samples, viral RNA was concentrated and extracted using silica-magnetic beads. RNA binds to silica under certain conditions, and by repeating this binding reaction, bulk samples collected from the air can be concentrated. After concentration and extraction, viral RNA is specifically detected through real-time qPCR (quantitative polymerase chain reaction). In addition, based on liquid handling technology, we have developed an automatic machine that automatically performs the entire testing process and can be easily used even by non-experts. To evaluate the system, we performed air sample collection and automated testing using bacteriophage MS2 as a model virus. As a result, the air-collected samples concentrated by 45 times then initial volume, and the detection sensitivity of PCR also confirmed a corresponding improvement.

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

Reactive Oxygen Species Mediates Lysophosphatidic Acid-induced Migration of SKOV-3 Ovarian Cancer Cells (SKOV-3 난소암 세포주에서 lysophosphatidic acid 유도 세포의 이동에 있어 활성산소의 역할)

  • Kim, Eun Kyoung;Lee, Hye Sun;Ha, Hong Koo;Yun, Sung Ji;Ha, Jung Min;Kim, Young Whan;Jin, In Hye;Shin, Hwa Kyoung;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1621-1627
    • /
    • 2012
  • Cell motility plays an essential role in many physiological responses, such as development, immune reaction, and angiogenesis. In the present study, we showed that lysophosphatidic acid (LPA) modulates cancer cell migration by regulation of generation of reactive oxygen species (ROS). Stimulation of SKOV-3 ovarian cancer cells with LPA strongly promoted migration. but this migration was completely blocked by pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Inhibition of the ERK pathway had no effect on migration. Stimulation of SKOV-3 ovarian cancer cells with LPA significantly induced the generation of ROS in a time-dependent manner. LPA-induced generation of ROS was significantly blocked by pharmacological inhibition of PI3K or Akt, but inhibition of the ERK signaling pathway had little effect. LPA-induced generation of ROS was blocked by pretreatment of SKOV-3 ovarian cancer cells with an NADPH oxidase inhibitor, whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I had no effect. Scavenging of ROS by N-acetylcysteine completely blocked LPA-induced migration of SKOV-3 ovarian cancer cells. Inhibition of NADPH oxidase blocked LPA-induced migration whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I did not affect LPA-induced migration of SKOV-3 ovarian cancer cells. Given these results, we suggest that LPA induces ROS generation through the PI3K/Akt/NADPH oxidase signaling axis, thereby regulating cancer cell migration.

Inherited metabolic diseases in the urine organic acid analysis of complex febrile seizure patients (복합 열성경련 환자의 소변 유기산 분석에서 나타난 유전대사질환)

  • Cheong, Hee Jeong;Kim, Hye Rim;Lee, Seong Soo;Bae, Eun Joo;Park, Won Il;Lee, Hong Jin;Choi, Hui Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • Purpose : Seizure associated with fever may indicate the presence of underlying inherited metabolic diseases. The present study was performed to investigate the presence of underlying metabolic diseases in patients with complex febrile seizures, using analyses of urine organic acids. Method : We retrospectively analyzed and compared the results of urine organic acid analysis with routine laboratory findings in 278 patients referred for complex febrile seizure. Results : Of 278 patients, 132 had no abnormal laboratory findings, and 146 patients had at least one of the following abnormal laboratory findings: acidosis (n=58), hyperammonemia (n=55), hypoglycemia (n=21), ketosis (n=12). Twenty-six (19.7 %) of the 132 patients with no abnormal findings and 104 (71.2%) of the 146 patients with statistically significant abnormalities showed abnormalities on the organic acid analysis (P<0.05). Mitochondrial respiratory chain disorders (n=23) were the most common diseases found in the normal routine laboratory group, followed by PDH deficiency (n=2) and ketolytic defect (n=1). In the abnormal routine laboratory group, mitochondrial respiratory chain disorder (n=29) was the most common disease, followed by ketolytic defects (n=27), PDH deficiency (n=9), glutaric aciduria type II (n=9), 3-methylglutaconic aciduria type III (n=6), biotinidase deficiency (n=5), propionic acidemia (n=4), methylmalonic acidemia (n=2), 3-hydroxyisobutyric aciduria (n=2), orotic aciduria (n=2), fatty acid oxidation disorders (n=2), 2-methylbranched chain acyl CoA dehydrogenase deficiency (n=2), 3-methylglutaconic aciduria type I (n=1), maple syrup urine disease (n=1), isovaleric acidemia (n=1), HMG-CoA lyase deficiency (n=1), L-2-hydroxyglutaric aciduria (n=1), and pyruvate carboxylase deficiency (n=1). Conclusion : These findings suggest that urine organic acid analysis should be performed in all patients with complex febrile seizure and other risk factors for early detection of inherited metabolic diseases.

Microbiologic distribution and clinical features of nontuberculous mycobacteria in the tertiary hospital in Daegu (대구지역 한 대학병원에서 비결핵 항산균의 미생물학적 분포 및 임상적 특성)

  • Hong, Kyung Soo;Ahn, June Hong;Choi, Eun Young;Jin, Hyun Jung;Shin, Kyeong-Cheol;Chung, Jin Hong;Lee, Kwan Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.32 no.2
    • /
    • pp.71-79
    • /
    • 2015
  • Background: Recent studies have shown that the nontuberculosis mycobacterium (NTM) recovery rate in clinical cultures has increased within Korea. However, another study conducted by a secondary hospital within Daegu reported different results. Therefore, the purpose of this study is to understand and evaluate the microbiological distribution and clinical features of NTM in Daegu. Methods: A retrospective study was conducted on 11,672 respiratory specimens undergoing acid fast bacilli (AFB) culture from 6,685 subjects who visited Yeungnam University Respiratory Center from January 2012 to December 2013. Results: Of the 11,672 specimens undergoing AFB culture, 1,310 specimens (11.2%) showed positive results. Of these specimens, NTM was recovered from 587 specimens, showing a recovery rate of 44.8%. Identification test for NTM was performed on 191 subjects; the results were as follows: M. avium-intracellulare complex (MAC) 123 (64.4%), M. abscessus 20 (10.5%), M. kansasii 12 (6.3%), and 33 other NTM germ strains. Of the 382 subjects with NTM, 167 were diagnosed with pulmonary NTM disease (43.7%), however virulence differed depending on NTM strain. Multivariate analysis showed that nodular bronchiectasis, the nodules, and finding consistent with cavity under imaging study were statistically significant for triggering pulmonary NTM disease. AFB culture showing MAC and M. abscessus was statistically significant as well. Positive predictive value for NTM polymerase chain reaction (NTM-PCR) was 88.6%. Conclusion: Results for NTM recovery rate within the Daegu area were similar to those for the Seoul metropolitan area. We can assume that NTM infection is increasing in our community, therefore AFB-positive subjects (1) should undergo NTM-PCR, (2) should have their culture results checked for differentiation of mycobacterium tuberculosis complex (MTB) from NTM, and (3) undergo NTM identification test to confirm its type. Administration of treatment with the above results should be helpful in improving the patients' prognosis.

ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells

  • Arduino, Daniela M.;Esteves, A. Raquel;Domingues, A. Filipa;Pereira, Claudia M.F.;Cardoso, Sandra M.;Oliveira, Catarina R.
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.719-724
    • /
    • 2009
  • Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

Development of Nested Polymerase Chain Reaction for the Detection of Mycoplasma hyopneumoniae in Formalin-fixed Paraffin-embedded Lung Tissues

  • Lim, Jung-eun;Ha, Seung-kwon;Chae, Chan-hee
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Mycoplasma hyopneumoniae is among the most prevalent and important infectious agents associated with porcine respiratory disease complex. The airway dagame caused by M. hyopneumoniae adversely affect the pulmonary host defense mechanisms and may lead to secondary bacterial infections. Culture is considered to be the "gold standard" for diagnosis but this is a very slow and labor-intensive procedure. Isolation of M. hyopneumoniae is complicated by its fastidious nature and extremely slow growth. Thirty days of incubation may be necessary to detect the organism in primary broth cultures. The purposes of the study were (ⅰ) to develop nested PCR for the detection of M. hyopneumoniae for the detection of M. hyopneumoniae DNA in the formalin-fixed, paraffin-embedded lung tissues from experimentally and naturally infected pigs and (ⅱ) to compare the utility of nested PCR with in situ hybridization. (omitted)

  • PDF

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.363-369
    • /
    • 2007
  • Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.

A triplex real-time PCR assay for simultaneous and differential detection of Bordetella bronchiseptica, Mycoplasma cynos, and Mycoplasma canis in respiratory diseased dogs

  • Gyu-Tae Jeon;Jong-Min Kim;Jeong-Hyun Park;Hye-Ryung Kim;Ji-Su Baek;Hyo-Ji Lee;Yeun-Kyung Shin;Oh-Kyu Kwon;Hae-Eun Kang;Soong-Koo Kim;Jung-Hwa Kim;Young-Hwan Kim;Choi-Kyu Park
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • Bordetella (B.) bronchiseptica, Mycoplasma (M.) cynos, and M. canis are the major bacterial pathogens that cause canine infectious respiratory disease complex (CIRDC). In this study, we developed a triplex real-time polymerase chain reaction (tqPCR) assay for the differential detection of these bacteria in a single reaction. The assay specifically amplified three bacterial genes with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra- and inter-assay variations of less than 1%. The diagnostic results of the assay using 94 clinical samples from household dogs with CIRDC clinical signs, the prevalence of B. bronchiseptica, M. cynos, and M. canis was 22.3%, 18.1%, and 20.2%, respectively, indicating that the diagnostic sensitivity was comparable to those of previously reported qPCR assays. The dual infection rate of B. bronchiseptica and M. cynos, B. bronchiseptica and M. canis, and M. cynos and M. canis was 5.3%, 7.4%, and 3.1%, respectively. Moreover, the triple infection rate of B. bronchiseptica, M. cynos, and M. canis was 2.1%. These results indicate that coinfections with B. bronchiseptica, M. cynos, and M. canis have frequently occurred in the Korean dog population. The newly developed tqPCR assay in the present study will be a useful tool for etiological and epidemiological studies on these three CIRDC-associated bacterial pathogens. The prevalence and coinfection data revealed through this study will contribute to expanding knowledge on the epidemiology of CIRDC in the recent Korean dog population.