• Title/Summary/Keyword: Resource-based Performance

Search Result 1,567, Processing Time 0.029 seconds

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Numerical Analysis-Based Design of PEMFC Channel, Fabrication of Channels, and Performance Test Using SU-8 (수치해석을 통한 PEMFC 채널의 설계와 SU-8을 이용한 채널 제작 및 성능 평가)

  • Choi, In-Jea;Wang, Hak-Min;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Fuel cells have attracted enormous interest as new power sources because the cells can be used to solve the problem of environmental pollution as well as the natural-resource exhaustion problem. In this study, hydrogen-gas flow in microchannels of different shapes was numerically analyzed to improve the efficiency of a microfuel cell. Flow characteristics in six microchannels of different shapes but under identical boundary conditions were simulated. The analysis result shows that the flow characteristics such as velocity, uniformity, and flow rate, greatly depend upon the channel shape. This implies that the efficiency of microfuel cell can be expected to be increased by adopting the optimal configuration of channel shape for hydrogen-gas flow. The experimental results show that power density of a PEMFC with a microflow channel is higher than that of a PEMFC without a microflow channel; however, a durable catalyst is required in MEA.

Changes in Milk Production and Metabolic Parameters by Feeding Lactating Cows Based on Different Ratios of Corn Silage: Alfalfa Hay with Addition of Extruded Soybeans

  • Yana, Rong;Zhang, Ruizhong;Zhang, Xian;Jiang, Chao;Han, Jian-Guo;Zhang, Ying-Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.800-809
    • /
    • 2011
  • The objective of this study was to investigate the effects of different ratios of corn silage (CS): alfalfa hay (AH), and extruded soybeans (ESB) on milk yield, milk composition, blood metabolites, and fatty acids in milk fat and plasma. Ninety multiparous Holstein cows were arranged in a randomized block design experiment which lasted 14 weeks. Treatments were arranged as a $3{\times}3$ factorial with 0%, 5% or 10% ESB (dry matter basis) and three forage treatments: I) 30% CS, 10% AH and 10% Leymus chinense hay (LC); ii) 20% corn silage, 20% alfalfa hay and 10% LC; iii) 10% CS, 30% AH and 10% LC. Cows were allowed to consume a total mixed ration ad libitum. There was no change of dry matter intake when cows were fed the experimental diets. As more AH was added to the diets, milk yield, milk protein content and yield, and trans9, cis11-conjugated linoleic acids (CLA) concentrations in milk fat and plasma increased. When ESB were supplemented to the diets, milk yield, and trans9, cis11-CLA concentration in milk fat and plasma increased. When 10% ESB was added to the diet containing 30% AH the trans9, cis11-CLA content (1.46 g/100 g of total fatty acids) in milk was the highest among all treatments. These results suggests that AH could replace part of a CS diet and be a good forage source of diet for dairy cows to improve milk yield and milk composition. Meanwhile, ESB could be included in the diet with high AH to improve production performance of dairy cows.

Design and Performance Analysis of FSC Receiver for Improvement of D2D Communication in Cellular Network (셀룰러 네트워크에서 D2D 통신 향상을 위한 FSC 수신기 설계 및 성능 분석)

  • Moon, Sangmi;Choe, Hun;Chu, Myeonghun;Kim, Hanjong;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.33-47
    • /
    • 2015
  • Cellular Network assisted device-to-device (D2D) communication has been growing to reduce the overload of eNodeB and mitigate the frequency shortage. However, by sharing the uplink frequency resource with the cellular network, the interference between cellular and D2D is increased. In this paper, we propose an advanced receiver for full suppression cancellation (FSC) to reduce the interference between cellular and D2D. The proposed receiver can suppress and cancel the interference by integrating the interference rejection combining (IRC) technique with successive interference cancellation (SIC). We perform a system level simulation based on the 20-MHz bandwidth of the 3GPP LTE-A system. Simulation results show that the proposed receiver can improve SINR, throughput and spectral efficiency compared to conventional receivers.

Design of QoS Supporting Mechanism using Openflow Protocol in Wireless Mesh Network Environments (무선 매시 네트워크 환경에서 오픈플로우 프로토콜을 이용한 QoS 지원 기법 설계)

  • Kang, Yong-Hyeog;Kim, Moon Jeong;Kim, Su-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.34-41
    • /
    • 2017
  • Wireless mesh networks contain multi-hop routing protocols between wireless nodes and are connected to the Internet through a gateway. These networks perform a role as a backbone and are scalable for main applications. We propose the design of QoS supporting mechanisms for wireless mesh networks using software defined networking. Our proposed scheme is cost-effective and features adaptive QoS mechanisms for wireless router's resource constraints. The QoS mechanisms use software defined networking technology with Openflow protocol based on diffserv and intserv models with MPLS mechanism and RSVP respectively. A performance evaluation model is suggested to verify the validity of the proposed scheme using several QoSmetrics of the wireless mesh networks.

A Study on Relationship among Knowledge State, IT Support, Knowledge Sharing Process and Outcomes in Startup Teams

  • Lee, Seyoon;Lee, Hyejung;Lee, Jungwoo
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.173-193
    • /
    • 2016
  • Start-ups do not have enough resources such as financial capital and established customer base. Knowledge base of start-up team members is the crucial and unrivaled resource. This study tries to explicate the knowledge sharing process occurring in this knowledge base of start-up teams. Adopting the knowledge process view, detail process of knowledge sharing process model is constructed consisting of knowledge sharing speed, quality and quantity in a form of nomological net and empirically tested. In addition, preceding antecedents and consequential outcomes of this knowledge sharing is also posited as part of the research model : knowledge state of the team leading to team creativity and agility via the explicated knowledge sharing process model. Also, as this knowledge based view are triggered by the advance of IT in general, IT support is conceptualized as an antecedent and measures are operationalized. 230 data points were collected from start-up teams. Via data analysis using PLS, theoretical relationships from knowledge state, IT support, knowledge sharing process and knowledge consequences are found to be empirically supported except a few not supported. Most of all, team agility and team creativity are theoretically supported and empirically validated as critical outcome variables beyond performance measures. Though agility and creativity has been discussed as critical construct in start-up teams, it has not be much validated empirically. Also, interestingly, IT support are found to be significantly impacting the knowledge sharing process as expected. Academic contributions and implications for practice are discussed at the end with limitations and further research.

A Time Synchronization Protocol for Energy-Constrained Wireless Networks (에너지 제한적인 무선 네트워크에서 동작하는 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.385-392
    • /
    • 2015
  • In IoT(Internet of Things), it is important for wireless networks to communicate data created among resource-constrained wireless nodes, where time synchronization is needed for meaningful data creation and transmission. Time Synchronization by flooding is one of the mostly used protocols for WSN(Wireless Sensor Networks). Even though this type of scheme has some advantages over other types (i.e. a simple algorithm and independency of topology and so on), too many data transmission is required, leading to large power consumption. So, reducing transmission data is an important issue for energy efficiency in this kind of networks. In this paper, a new Flooding-based time synchronization protocol is proposed to use energy efficiently by reducing a transmitted traffic. The proposed scheme's performance has been evaluated and compared with an representative scheme, FTSP(Flooding Time Synchronization Protocol) by simulation. The results are shown that the proposed scheme is better than FTSP.

Distribution Analysis of Optimal Equipment Assignment Using a Genetic Algorithm (유전알고리즘을 이용하여 최적화된 방제 자원 배치안의 분포도 분석)

  • Kim, Hye-Jin;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • As a plan for oil spill accidents, research to collect and analyze optimal equipment assignments is essential. However, studies that have diversified and analyzed the optimal equipment assignments for responding to oil spill accidents have not been preceded. In response to the need for analyzing optimal equipment assignments study, we devised a genetic algorithm for optimal equipment assignments. The designed genetic algorithm yielded 10,000 optimal equipment assignments. We clustered using the k-means algorithm. As a result, the two clusters of Yeosu, Daesan, and Ulsan, which are expected to be the largest spills, were clearly identified. We also projected 16-dimensional data in two dimensions via Sammon's mapping. The projected data were analyzed for distribution. We confirmed that results of the simulation were better than those of optimal equipment assignments included in the cluster.In the future, it will be possible to implement an approximate model with excellent performance based on this study.

A research on feedback effect according to different sensory modality for attention recovery (집중력 회복을 위한 감각 모달리티 별 피드백에 대한 연구)

  • Hyun, Hye-Jung;Whang, Min-Cheol
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • This study aims to empirically examine the effect of feedback on attention recovery. The role of feedback has been proven to be positive in particular to extend the limitation of attention resource. We studied the impact of feedback on attention by varying its type and modality. An experimental system was developed to observe how accurately the participants performed the pattern-matching task with differential feedback provided on a real-time basis based on the ADHD diagnostic model. Six university students participated in this study with 6 different feedback conditions and controlled conditions. The participants experienced the feedbacks before experiment. They was asked two hundred tasks in four feedback conditions. The difference of feedback effect according to different modality is to find within a subject. The results indicated that the combined feedback of cognitive with perceptual stimulus led better performance than the combined of perceptual feedbacks.

  • PDF

A thermodynamic analysis on the utilization of thermal water (온수 이용에 관한 열역학적 해석)

  • 이세균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 1987
  • An analysis on the thermodynamic optimum use of thermal water has been accomplished. The systems investigated are power generation and space heating. The space heating systems considered in this study are direct heating, heat pumps and heat pump assisted heating. The object of this study is to find the optimum selection and operation of the system under the given resources. The measure of such optimum conditions is the EFFECTIVENESS, the concept of efficiency based upon the Second Law of Thermodynamics. The temperature of water to waste is identified as the most important parameter to be optimized. The analysis indicates that for high temperature resources (higher than about 425K) power generation yields the best performance and is therefore recommended. The heat pumps are recommended for the resource temperature less than about 327K. The heat pump assisted heating system shows its superiority for the very narrow temperature range (320K-330K) and thus the use of this system should be considered when the flow rate is very limited. thus the direct heating is appropriate for the temperature range of 330K-425K. The analysis also shows the optimum capacity of thermal water, which may be useful for the initial estimation of heating or power generation potentials of given resources.